

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-9562-MAN/32

ANÁLISE DE HIDRAZINA EM EFLUENTES SEGUNDO A NORMA ASTM D 1385-78

Turíbio Gomes Soares Neto Jorge Benedito Freire Jofre

Publicação Interna – sua reprodução para o público externo está sujeita à autorização Da chefia

> INPE São José dos Campos 2003

RESUMO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de hidrazina nos efluentes do Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma ASTM D 1385 -78 editada em 06/03/78.

EFFLUENT HYDRAZINE ANALYSIS IN AGREEMENT WITH THE ASTM D 1385-78 NORM

ABSTRACT

The main objective of this document is to establish a standard procedure for hydrazine analysis in effluent of Combustion and Propulsion Associate Laboratory (LCP/CES/INPE), in order to verify its accordance with the specifications of the ASTM D 1385-78 Norm that was published in March 1978.

SUMÁRIO

LISTA DE FIGURAS

LISTA DE SIGLAS E/OU ABREVIATURAS

1 OBJETIVO E CAMPO DE APLICAÇÃO	6
2 CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA	6
3 HIDRAZINA EM ÁGUA	7
3.1 Introdução	7
3.2 Equipamentos e Acessórios	7
3.3 Análise em Passos	8
3.3.1 Preparação dos Padrões de Calibração	8
3.3.2 Construindo uma Curva de Calibração	9
3.3.3 Preparação das Amostras para a Dosagem	9
3.3.4 Operação do Equipamento	10
3.3.5 Criando o Método Hidrazin.MCO	12
3.3.6 Arquivo Hidrazin.rca	16
3.3.7 Arquivo Hidrazin.rco	16
4 MODELO DE RELATÓRIO DE ANÁLISE	16
5 LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE	20
REFERÊNCIAS BIBLIOGRÁFICAS	22

Pág.

LISTA DE FIGURAS

	Pág.
1 Opções do software Lambda	11
2 Seleção do método hidrazin.MCO	11
3 Método hidrazin.MCO	12
4 "CONC"	13
5 "Instrument"	14
6 "Refs"- Identificação dos padrões	14
7 "Sample" - Identificação das amostras	15
8 "Method Save As"	15
9 Arquivo Hidrazin.rca	17
10 Arquivo Hidrazin.rco	18
11 Modelo de Relatório de Análise.	19

LISTA DE SIGLAS E/OU ABREVIATURAS

- EPI Equipamento de proteção individual
- PDAB Paradimetilaminobenzaldeido

1. OBJETIVO E CAMPO DE APLICAÇÃO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de hidrazina nos efluentes do Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma ASTM D 1385 - 78 editada em 06/03/78.

2. CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA

É extremamente importante lembrar dos riscos que são inerentes a manipulação de produtos químicos muito tóxicos e instáveis, os quais formam pares hipergólicos, como é o caso da hidrazina.

A adoção das seguintes precauções é indispensável para que a análise seja efetuada com a melhor segurança possível:

- As amostras de padrões de propelentes devem ser armazenadas e/ou transportadas sob baixa temperatura, preferencialmente armazenadas em freezer e transportadas em banho de gelo;
- Colocar cartaz na entrada do laboratório indicando que está sendo manipulado produto tóxico;
- 3) Manipulação dos produtos químicos em capela;
- 4) Usar EPI como avental, óculos de proteção, luvas e máscara facial;
- Os equipamentos de segurança do Laboratório Químico devem estar em bom estado: chuveiro, lava olhos, extintores de água;
- 6) Não colocar ou manipular substâncias oxidantes nas proximidades;
- Utilização obrigatória do detector de hidrazina;
- 8) Munir-se da Lista de Checagem descrita no item: **5. LISTA DE** CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE.

Gostaríamos de salientar que existem algumas publicações internas do INPE, relativo à segurança, manuseio e análise de hidrazina (Calegão et al. (1995); Bressan et al. (1996)).

3. HIDRAZINA EM ÁGUA

3.1. Introdução

A determinação de hidrazina em água é efetuada utilizando-se um método fotométrico, onde o paradimetilaminobenzaldeído (PDAB) ao reagir com a hidrazina produz um complexo de cor amarela. A intensidade da coloração amarela é proporcional à concentração de hidrazina na água e segue a Lei de BEER.

3.2. Equipamentos e Acessórios

- Espectrofotômetro de UV/VIS/NIR, modelo Lambda 19 da Perkin Elmer, com Sistema de Controle e Aquisição de Dados;

- Balança Analítica de precisão com cinco casas decimais, marca Mettler Toledo, modelo AT261Delta Range;

- Balões Volumétricos de1000, 500, 250, 100 e 50 ml;
- Frasco Escuro de 100ml;
- Becker de 100ml;
- Pipeta Volumétrica de 50ml;
- Pipeta Graduada de 10ml;
- Micropipeta Automática de 100 µl;
- Proveta de 100ml;
- Espátula de inox;
- Paradimetilaminobenzaldeído (PDAB);
- HCl concentrado (d=1,19 g/cm³);

 HCI (1+9) – misturar 1 volume de HCI concentrado com 9 volumes de água destilada;

- HCI (1+99) – misturar 1 volume de HCI concentrado com 99 volumes de água destilada:

- Metanol;

- Padrão de hidrazina com alta pureza.

3.3. Análise em Passos

3.3.1. Preparação dos Padrões de Calibração

- Preparar uma solução mãe: Em um balão volumétrico de 1000 ml pipetar exatamente 100 μl de um padrão de alta pureza de N₂H₄ (com pureza previamente determinada) em 100ml de H₂O e 10 ml de HCl (d = 1,19). Diluir com água recentemente destilada e isenta de oxigênio, até a marca de 1000 ml;
- PADRÕES: Preparar uma série de padrões a partir da solução mãe fazendo diluições apropriadas, com HCI (1+99), tal que uma alíquota de 50 ml da amostra contenha uma quantidade desejada de hidrazina (0,2 a 0,5 μg). Use sempre uma micropipeta de 100 μl com ponteiras descartáveis;
- Para preparação de uma solução de 0,02 ppm, pipetar 100 μl da solução mãe em balão volumétrico de 500 ml e avolumar até a marca com HCl (1+ 99);
- Para preparação de uma solução de 0,04 ppm, pipete 100 μl da solução mãe em balão volumétrico de 250 ml e avolumar até a marca com HCl (1+99);
- 5) Para preparação de uma solução de 0,10 ppm. Pipete 100 μl da solução mãe em balão volumétrico de 100 ml e avolumar até a marca com HCl (1+ 99);

3.3.2. Construindo uma Curva de Calibração

- Preparação do reagente (PDAB): Dissolva 1,6 g do reagente em 80 ml de metanol + 8 ml de HCl (d=1,19). Guarde em frasco escuro para evitar a degradação do mesmo pela ação da luz solar;
- 2) Para cada padrão, pipetar exatamente 50 ml e transferir para um balão ou becker de 100ml. Adicionar exatamente 10 ml da solução do reagente (PDAB) e homogeneizar. Deixe a mistura em repouso por no mínimo 10 minutos e não mais que 100 minutos. Medir a absorbância em 458 nm;
- 3) Para preparar o branco, pipetar exatamente 50 ml de HCI (1+99) e transferir para um balão ou becker de 100ml. Adicionar exatamente 10 ml da solução do reagente (PDAB) e homogeneizar. Deixe a mistura em repouso por no mínimo 10 minutos e não mais que 100 minutos. Medir a absorbância em 458 nm;
- Construir a curva de calibração na forma de absorbância versus concentração de hidrazina em ppm;
- Uma nova curva de calibração deve ser construída para cada nova análise de amostra.

3.3.3. Preparação da Amostra para a Dosagem

- Adicionar a um becker ou balão de 100ml exatamente 5 ml de HCl (1+9);
- Por meio de uma pipeta graduada, transferir para este becker ou balão um volume conhecido da amostra. Adicionar água até completar exatamente 50 ml;
- Adicionar exatamente 10 ml da solução do reagente (PDAB) e homogeneizar. Deixe a mistura em repouso por no mínimo 10 minutos e não mais que 100 minutos. Medir a absorbância em 458 nm;

A concentração de hidrazina na amostra para a dosagem deverá estar dentro da faixa de calibração que é de 0,02 ppm a 0,10 ppm. Nesta faixa de concentração, obtém-se uma boa linearilidade na curva de calibração.

3.3.4. Operação do Equipamento

- 1) Ligar o micro e a impressora;
- 2) Ligar o espectrofotômetro usando o interruptor frontal do equipamento;
- Operar o equipamento com a temperatura da sala controlada em torno de 20 ºC;
- Antecedendo as análises é conveniente deixar o equipamento ligado por cerca de 15 minutos para aquecimento de suas lâmpadas e estabilização de seus componentes eletrônicos;
- 5) Carregar programa UV Winlab usando o atalho Lambda 19 no Windows;
- Aparecerá a tela correspondente à figura 1. Clicar em "Conc" e, nesse instante aparecerá a tela correspondente à figura 2. Carregar o método hidrazin.MCO clicando duas vezes com o mouse sobre o mesmo;
- 7) Aparecerá a tela correspondente ao método hidrazin.MCO (figura 3). Encher a cubeta com o branco e colocá-la no porta-amostra na posição mais próxima do operador. Executar o comando "Start". Retire a cubeta com o branco. Na seqüência o equipamento irá informar para colocar os padrões e logo após a amostra. Use sempre o mesmo porta-amostras para encaixar as cubetas com as soluções;

<mark>⊋</mark> UV WinL Eile <u>V</u> iew	ab <u>U</u> tilities <u>A</u> p	plication <u>D</u> a	ata handling	<u>W</u> indow <u>H</u> e	lp		
Start	Autozero		2 💉 🎺	Setup		6	F= 1
😼 Methods							_ 🗆 ×
ACANTES ANILINA.N COPYOF [®] HN03.MS N204.MS0 N0.MSC SCAN1.M3 UREIA.MS UVREPT3	ST.MSC MSC '1.MSC C C SC SC SC MMSC						
Fileinfo							
		u / \ w	/p / \ C	onc / \0	thers/		

Fig. 1 - Opções do software Lambda 19.

🗞 Methods	_ 🗆 🗙
Files	
ACETONA.MCO	
CONACET.MCO	
CONACE TI.MCU	Black.
METANOL MCO	Sector 1
TINTANA MCO	2325.1
UDMH.MCO	1. 1. 1.
UREIA.MCO	
UREIA2.MCO	
Fileinfo	
Hidrazina	
Scan Td Wp Conc Others	

Fig. 2 - Seleção do método hidrazin.MCO.

	MEASUREME	INT
Ordinate mode :	Single wavelength	Curve/Factor : Automatic
Baseline correction :	No correction	
	WAVELENGT	HS
Analytical 1 :	458.0	
Number of replicates :	1	Number of samples to average : 1
Method info : Hidrazin	a	
Orace to bart 1	Defe /	mala/ \Qutaut/

Fig. 3 - Método hidrazin.MCO.

- 8) Acompanhar os resultados no arquivo de saída Hidrazin.rca;
- Verifique se é necessário diluir a amostra para se obter o resultado dentro da faixa de calibração. Caso isso ocorra, refaça a análise com as devidas diluições;
- Descartar os resíduos das análises em recipientes adequados para que seja feito o tratamento necessário para descarte em efluentes;
- Efetuar os cálculos complementares para determinação da concentração de hidrazina levando-se em conta o fator de diluição das amostras.

3.3.5. Criando o Método Hidrazin.MCO

- Na barra de ferramenta do software Lambda 19, clicar em "Application" e selecionar "CONC". Aparecerá a tela correspondente à figura 4;
- Preencha a primeira página identificada no rodapé como sendo "CONC." Seguindo o modelo da figura 4;

- Passe para a página seguinte identificada como "Inst.". Preencha os campos de configuração para "Instrument", conforme a figura 5;
- Passe para a página seguinte identificada como "Refs". Essa página é designada para identificação dos padrões e construção de curvas de calibração. Preencher conforme a figura 6;
- Por último preencha a página identificada como "Sample", como mostra a figura 7;
- Salvar esse novo método usando os recursos da barra de ferramenta do software Lambda 19 clicando em "File-Save as", como mostra a figura 8;

	MEASUREM	IENT	
Ordinate mode :	Single wavelength 💌	Curve/Factor :	Automatic 💌
Baseline correction :	No correction		
	WAVELENG	THS	
Analytical 1 :	458,0		
Number of replicates :	1	Number of sample	s to average : 1
Number of replicates : Method info : Hidrazi	1 na em água - Tratamento de d	Number of sample	s to average : 1
Number of replicates : Method info : Hidrazi	1 na em água - Tratamento de d	Number of sample effuente	s to average : 1

Fig. 4 - "CONC".

	INSTRUM	
Response :	0.2 💌 s	Scan speed : 240 mm/min
Lamp UV :	On O Off	Smooth : 0 💌 nm
Lamp Vis :	On Ø Off	NIR Sensitivity : 3
Slit :	2,00 nm	
Lamp change :	319,2 nm	Detector change : 860,8 nm
		語を見ていたのに語

Fig. 5 - "Instrument".

C:\UVWINL	AB\METHOD\hidra	zin.mco	
🗌 Use exi	isting calibration		Enter calibration edit mode
🗹 Recalib	oration	Frequency 1	Tolerance 3,0 %
			Concentration unit ppm
Calibration	mode: Concentr	ation	Number of references 3
		Fill down Delete row	/ Insert row
No.	Concentration		Info
1	0,0200 P	adrao 1 - 0.02 ppm	
2	0,0400 P	adrao 2 - 0.04 ppm	
3	0,1000 P	adrao 3 - 0.10 ppm	
•			▼ }
Conc.	Inst. R	efs.	Sample/ Output/

Fig. 6 - "Refs" - Identificação dos padrões.

Result File	name: N2H4 factor: Facto	l Dr	Number of samples : 1
		Fill down Delet	e row Insert row
No.	Sample Identity	Factor	Sample Info
1	001	1,0000 Amo	stra de hidrazina em agua

Fig. 7 - "Sample"- Identificação das amostras.

Filename :	Method info :	
hidrazin	Hidrazina em água - Tratamento de e	
acetona	Edit method info file	UK
conacet1 conc1 bidrazin	Auto start	
metanol tinta	Autozero on start	
udmh	🗾 🗾 Use next autoinc. filename	7 Help

Fig. 8 - "Method Save As".

3.3.6. Arquivo Hidrazin.rca

Esse arquivo se refere aos dados da curva de calibração e apresenta os valores de absorbância para cada padrão utilizado para construção dessa curva, a equação da reta (ou curva) e seu coeficiente de correlação. O software sugere a melhor equação que se ajusta à curva, porém, sempre utilize a equação de uma reta e descarte os pontos de maior variância para que o coeficiente de correlação tenha o valor mais próximo de 1. Caso o erro residual continue significativo, refaça os padrões e cheque o limite de linearidade para as concentrações em uso. A figura 9 mostra um exemplo desse arquivo.

3.3.7. Arquivo Hidrazin.rco

Nesse arquivo, são guardados os resultados da análise das amostras como mostra a figura 10.

4. MODELO DE RELATÓRIO DE ANÁLISE

O relatório de análise deverá constar de :

- a) Um formulário padrão que disponha de campos de identificação da amostra, dados da análise e resultados. O modelo deste formulário é apresentado na figura 11.
- b) Anexos correspondentes aos resultados emitidos pelo software Lambda
 19 são apresentados nas figuras 9 e 10.

CALIBRATION

Date: 16/10/2002 Time: 14:08:48 Instrument: Perkin-Elmer LAMBDA 19 UV/VIS/NIR Serial No: 065182 Method: HIDRAZIN Ordinate mode: Single wavelength Baseline: No correction (0,00 0,00) Analyst: JOFRE

Wavelength(s) Sample ID Concentration Ord. value Comment

458,00,0Hidrazin.A010,0200ppm0,0302458,00,0Hidrazin.A020,0400ppm0,0610458,00,0Hidrazin.A030,1000ppm0,1912

Equation: y = 1.461642e+00 * x + 4.501845e+01 *x*x*x

Residual error: 0,000699 Correlation coefficient: 0,999983

RECALIBRATION

Date: 16/10/2002 Time: 14:13:12 Instrument: Perkin-Elmer LAMBDA 19 UV/VIS/NIR Serial No: 065182 Method: HIDRAZIN Ordinate mode: Single wavelength Baseline: No correction (0,00 0,00) Analyst: JOFRE

Wavelength(s) Sample ID Concentration Ord. value Comment

458,00,0Hidrazin.A010,0200ppm0,0302458,00,0Hidrazin.A020,0400ppm0,0610458,00,0Hidrazin.A030,1000ppm0,1912

Equation: y = 1.e-04 + 1.525x Residual error: 0,00061 Correlation coefficient: 0,99998 pm 0,0610 pm 0,1912 **unused**

Fig. 9 - Arquivo Hidrazin.rca.

Concentration Results

Date: 16/10/2002 Time: 14:20:06 Instrument: Perkin-Elmer LAMBDA 19 UV/VIS/NIR Serial No: 065182 Method: HIDRAZIN Ordinate mode: Single wavelength Slit: 2,00 nm Baseline: No correction (0,00 0,00) Result Filename: N2H1.RCO Autozero performed: 16/10/2002 14:13:12 Analyst: JOFRE

Wavelength(s) Sample ID Ordinate Factor Concentration Sample Info

458,0	0,0	N2H4	0,0536	1,0000	0,0350 ppm	Hidrazina em água
1	17:1			and a		明確な 会社 日日

Fig. 10 - Arquivo Hidrazin.rco.

Instituto Nacional de Pesquisas Espaciais - INPE Banco de Teste com Simulação de Altitude- BTSA

RELATÓRIO DE ANÁLISE N.º 000/00

	DOG DA AMOSTRA	
DA	ADUS DA AMUSTRA	
Amostra	Lote:	Fabr.:
Hidrazina em água	*****	Solução preparada
Quantidade amostrada	Ponto de coleta	DATA/HORA
100 ml	*****	05/07/2001
Responsável pela amostragem	Especificação do Fabr.	
D	ADOS DA ANÁLISE	
Norma:	Técnica:	Determinação
ASTM D 1385-78	Espectrofotometria	ppm de hidrazina em água
Responsável pela análise	N ° DE REPETIÇÃO	DATA/HORA
Jofre / Turibio	1	16/10/2002 -14:20
	RESULTADOS	
DETERMINAÇÃO	ENCONTRADO	ACEITAVEL ATE
Concentração de Hidrazina	0.0351 ppm	1 ppm para descarte em efluente

Fig. 11 - Modelo de Relatório de Análise.

5. LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE

Ao iniciar uma análise o operador deverá ter obrigatoriamente em mãos a lista de checagem para conferir, de maneira simplificada, os passos da análise. Caso haja dúvida, consultar o item **3.3 Análise em Passos** do seguinte documento que normatiza o procedimento de análise: **ANÁLISE DE HIDRAZINA EM EFLUENTES SEGUNDO A NORMA ASTM D 1385-78.**

- Atentar para as normas de segurança (item 2 do documento ANÁLISE DE HIDRAZINA EM EFLUENTES SEGUNDO A NORMA ASTM D 1385-78);
- 2) Preparar os padrões de calibração;
- 3) Construir uma curva de calibração;
- 4) Preparar a amostra para a dosagem;
- 5) Ligar o micro e a impressora;
- 6) Ligar o espectrofotômetro usando o interruptor frontal do equipamento;
- Operar o equipamento com a temperatura da sala controlada em torno de 20ºC.
- Antecedendo as análises, é conveniente deixar o equipamento ligado por cerca de 15 minutos para aquecimento de suas lâmpadas e estabilização de seus componentes eletrônicos;
- Carregar programa UV Winlab usando o atalho Lambda 19 no Windows;
- Aparecerá a tela correspondente à figura 1. Clicar em "Conc", nesse instante aparecerá a tela correspondente à figura 2. Carregar o método hidrazin.MCO clicando duas vezes com o mouse sobre o mesmo;
- 11) Aparecerá a tela correspondente ao método hidrazin.MCO (figura 3). Encher a cubeta com o branco e colocá-la no porta-amostra na posição mais próxima do operador. Executar o comando "Start". Retire a cubeta com o branco. Na seqüência o equipamento irá informar que

se coloque os padrões e logo após a amostra. Use sempre o mesmo porta-amostra para encaixar as cubetas com as soluções;

- 12) Acompanhar os resultados no arquivo de saída Hidrazin.rca;
- Verifique se é necessário diluir a amostra, a fim de se obter o resultado dentro da faixa de calibração. Caso isso ocorra refaça a análise com as devidas diluições;
- Descartar os resíduos das análises em recipientes adequados para que seja feito o tratamento necessário para descarte em efluentes;
- Efetuar os cálculos complementares para determinação da concentração de hidrazina levando-se em conta o fator de diluição das amostras.

REFERÊNCIAS BIBLIOGRÁFICAS

- American Society For Testing and Materials (ASTM). **D 1385 Hydrazine**, **Calorimetric with** *p***-Dimethylaminobenzaldehyd**. USA, 1978.
- Calegão, I. C. C; Ferreira, J. L. G.; Ferreira, M. A. Segurança e manuseio de hidrazina anidra. São José dos Campos: INPE,1995. 44p. (INPE 5644 MAN/04).
- Bressan, C.; Calegão, I. C. C; Ferreira, M. A; Vieira, R. L. Procedimento de transferência de hidrazina anidra grau monopropelente. Cachoeira Paulista: INPE, 1996. 27p. (INPE - 5983 - MAN/09).