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ABSTRACT 
 This paper is concerned with trajectories to transfer a spacecraft between the 
Lagrangian points of the Sun-Earth system and the primaries of that system. The Lagrangian 
points have important applications in astronautics, since they are equilibrium points of the 
equation of motion and very good candidates to locate a satellite or a space station. The 
planar circular restricted three-body problem in two dimensions is used as the model for the 
Sun-Earth system, and Lamaître regularization is used to avoid singularities during the 
numerical integration required to solve the Lambert's three-body problem. The results show 
families of transfer orbits, parameterized by the transfer time. 
 

1- INTRODUCTION 
 The well-known Lagrangian points that appear in the planar restricted three-body 
problem (Szebehely, 1967) are very important for astronautical applications. They are five 
points of equilibrium in the equations of motion, what means that a particle located at one of 
those points with zero velocity will remain there indefinitely. Their locations are shown in 
Figure 1. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 
and L5) are stable in the present case studied (Sun-Earth system). They are all very good 
points to locate a space-station, since they require a small amount of ∆V (and fuel) for 
station-keeping. The triangular points are specially good for this purpose, since they are 
stable equilibrium points. 
 In this paper, the planar restricted three-body problem is regularized (using Lamaître 
regularization) and combined with numerical integration and gradient methods to solve the 
two point boundary value problem (the Lambert's three-body problem). This combination is 
applied to the search of families of transfer orbits between the Lagrangian points and the 
primaries, in the Sun-Earth system, with the minimum possible energy. This paper is a 
continuation of two previous papers that studied transfers in the Earth-Moon system: Broucke 
(1979), that studied transfer orbits between the Lagrangian points and the Moon and Prado 
(1996), that studied transfer orbits between the Lagrangian points and the Earth. 
 

2 - THE PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM 
 The model used in all phases of this paper is the well-known planar circular restricted 
three-body problem. This model assumes that two main bodies (M1 and M2) are orbiting their 
common center of mass in circular Keplerian orbits and a third body (M3), with negligible 
mass, is orbiting these two primaries. The motion of M3 is supposed to stay in the plane of the 
motion of M1 and M2 and it is affected by both primaries, but it does not affect their motion 
(Szebehely, 1967). The canonical system of units is used, and it implies that: i) The unit of 
distance (l) is the distance between M1 and M2; ii) The angular velocity (ω) of the motion of 
M1 and M2 is assumed to be one; iii) The mass of the smaller primary (M2) is given by µ = 
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 (where m1 and m2 are the real masses of M1 and M2, respectively) and the mass of 

M2 is (1-µ), so the total mass of the system is one; iv) The unit of time is defined such that 
the period of the motion of the primaries is 2π; v) The gravitational constant is one. Table 1 
shows the values for these parameters for the Sun(M1)-Earth(M2) system, that is the case 
considered in this paper. 
 

Table 1 - Canonical system of units 
Unit of distance 149,596,000 km 
Unit of time 58.13 days 
Unit of velocity 29.8 km/s 

 
 Then, the equations of motion are: 
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where Ω is the pseudo-potential given by: 
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 This system of equations has no analytical solutions, and numerical integration is 
required to solve the problem. This system has an invariant called Jacobi integral. There are 
many ways to define the Jacobi integral (see Szebehely, 1967, pg. 449). In this paper the 
definition shown in Broucke (1979) is used. Under this version, the Jacobi integral is given 
by:  
 

    ( ) ( ) Const = y,x-y+x2
1= 22 Ω&&E      (9) 

 
 The three-body problem has also two important properties: 
 1) The existence of five equilibrium points (called the Lagrangian points L1, L2, L3, L4 

and L5, as seen in Figure 1), that are the points where ∂
∂
Ω
x

 = ∂
∂
Ω
y

 = 0. It corresponds to say 

that a particle in this point with zero initial velocity remains in its position indefinitely. The 
first three (L1, L2, L3) are called collinear points (because they are in the "x" axis) and they 
are unstable for any value of µ. The last two (L4 and L5) are called triangular points (because 
they form an equilateral triangle with M1 and M2) and they are stable for µ < 0.03852, what 
means that they are stable in the present case (Sun-Earth), since µ = 0.0000030359. Their 
locations and potential energy are shown in Table 2. 
 

 



XL3M1
LL 12 M2

Y

L5

L4
Fixed

SystemM3

r

r

2

1

 
 

Figure 1 - Geometry of the problem of three bodies. 
 

Table 2 - Position and potential energy of the five Lagrangian points 
 x y E0 
L1 -0.9899909 0 -1.5004485 
L2 -1.0100702 0 -1.5001481 
L3 1.0000013 0 -1.5000015 
L4 -0.4999969 +0.8660254 -1.4999984 
L5 -0.4999969 -0.8660254 -1.4999984 

 
 2) The curves of zero velocity, that are curves given by the expression: 
 
    ( )y,x-=0E Ω                  (10) 
 
that is the equivalent of equation (9) in the special case where x y . They are important, 
because they determine forbidden and allowed regions of motion for M3 based in its initial 
conditions. More details about these and other properties of the three-body problem can be 
found in Szebehely (1967) and Broucke (1979). 
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 3 - LAMAÎTRE REGULARIZATION 

 The equations of motion given by equation (7) are not suitable for numerical 
integration in trajectories passing near one of the primaries. The reason is that the positions of 
both primaries are singularities in the potential V (since r1 or r2 goes to zero, or near zero) and 
the accuracy of the numerical integration is affected every time this situation occurs. The 

 



solution for this problem is the use of regularization, that consists in a substitution of the 
variables for position (x-y) and time (t) by another set of variables (ω1, ω2, τ), such that the 
singularities are eliminated in these new variables. Several transformations with this goal are 
available in the literature (Szebehely, 1967, chapter 3), like Thiele-Burrau, Lamaître and 
Birkhoff. They are called "global regularization", to emphasize that both singularities are 
eliminated at the same time. The case where only one singularity is eliminated at a time is 
called "local regularization". For the present research the Lamaître's regularization is used. 
To perform the transformation it is necessary first to define a new complex variable  q = q1 + 
iq2 (i is the imaginary unit), with q1 and q2 given by: 
 
   yq                    ,2/1xq 21 =µ−+=                          (11) 
 
 Now, in terms of q, the transformation involved in Lamaître regularization is given 
by: 
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for the old variables for position (x-y) and: 
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where f '(ω) denotes ∂
∂ω

f , for the time. 

 In the new variables the equation of motion of the system is: 
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where ω = ω1 + iω2 is the new complex variable for positions, ω' and ω" denotes first and 
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where C = µ(1-µ) - 2E. 
 Equations (14) in complex variables can be separated in two second order equations 
in the real variables ω1 and ω2 and organized in the standard first order form, that is more 
suitable for numerical integration. The final form, after defining the regularized velocity 
components ω3 and ω4 as ω  and 1 ω' = 2 4ω ω' = , is: 3
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 Another necessary set of equations is the one to map velocity components from one 
set of variables to another. They are: 
 

    ( )
( ) 321

'f
'fq ω
ω

ω
=&  ( )

( ) 422
'f
'fq ω
ω

ω
=&              (17) 

       
4 - THE MIRROR IMAGE THEOREM 

 The mirror image theorem (Miele, 1960) is an important and helpful property of the 
planar circular restricted three-body problem. It says that: "In the rotating coordinate system, 
for each trajectory defined by x  that is found, there is a symmetric (in 
relation to the "x" axis) trajectory defined by x ". The proof is 
omitted in this paper, but the reader can verify its veracity by substituting those two solutions 
in the equations of motion. With this property, there is no need to calculate the returning 
trajectories from the primaries to the Lagrangian points. For the collinear points, the 
symmetric of the trajectory that goes from the Lagrangian point to the Earth is the trajectory 
that goes from the Earth to the Lagrangian point. For the triangular points the situation is a 
little more complex, since these points are not in the "x" axis. The symmetric of the trajectory 
that goes from L4 to the Earth is the trajectory that goes from the Earth to L5 and the 
symmetric of the trajectory that goes from L5 to the Earth is the trajectory that goes from the 
Earth to L4. 

(t), y(t), x(t), y(t)& &

(-t), - y(-t), - x(-t), - y(-t)& &

 
5 - THE LAMBERT'S THREE-BODY PROBLEM 

 The problem that is considered in the present paper is the problem of finding 
trajectories to travel between the Lagrangian points and the primaries. Since the rotating 
coordinate system is used and all the primaries and the Lagrangian points are in fixed known 
positions, this problem can be formulated as:  
 "Find an orbit (in the three-body problem context) that makes a spacecraft to leave a 
given point A and goes to another given point B". That is the famous TPBVP (two point 
boundary value problem). There are many orbits that satisfy this requirement, and the way 
used in this paper to find families of solutions is to specify a time of flight for the transfer. 
Then, the problem becomes the Lambert's three-body problem, that can be formulated as: 
 "Find an orbit (in the three-body problem context) that makes a spacecraft to leave a 
given point A and goes to another given point B, arriving there after a specified time of 
flight". Then, by varying the specified time of flight it is possible to find a whole family of 
transfer orbits and study them in terms of the ∆V required, energy, initial flight path angle, 
etc. 
 

 



6 - THE SOLUTION OF THE TPBVP 
 The restricted three-body problem is a problem with no analytical solutions, so 
numerical integration is the only possible approach to solve it. To solve the TPBVP in the 
regularized variables the following steps are used: r
 i)   Guess a initial velocity V i, so together with the initial prescribed position rr i the 
complete initial state is known; 
 ii)   Guess a final regularized time τf  and integrate the regularized equations of 
motion from τ0   = 0 until τf; 
 iii)   Check the final position rr f obtained from the numerical integration with the 
prescribed final position and the final real time with the specified time of flight. If there is an 
agreement (difference less than a specified error allowed) the solution is found and the 
process can stop here. If there is no agreement, an increment in the initial guessed velocity 

r
V i 

and in the guessed final regularized time is made and the process goes back to step i). 
 The method used to find the increment in the guessed variables is the standard 
gradient method, as described in Press et. al., 1989. The routines available in this reference 
are also used in this research with minor modifications. 
 

7 - NUMERICAL RESULTS 
 The Lambert's three-body problem between the primaries and the Lagrangian points is 
solved for several values of the time of flight. Since the regularized system is used to solve 
this problem, there is no need to specify the final position of M3 as lying in an primary's 
parking orbit (to avoid the singularity). Then, to make a comparison with previous papers 
(Broucke, 1979 and Prado, 1996) the center of the primary is used as the final position for 
M3. The results are organized in plots of the energy (as given by equation 9) and the initial 
flight path angle in the rotating frame against the time of flight. The definition of the angle is 
such that the zero is in the "x" axis, (pointing to the positive direction) and it increases in the 
counter-clock-wise sense. Plots of the trajectory in the rotating  system are also included. 
This problem, as well as the Lambert’s original version, has two solutions for a given transfer 
time: one in the counter-clock-wise direction and one in the clock-wise direction in the 
inertial frame. In this paper, emphasis is given in finding the families with the smallest 
possible energy (and velocity at the Lagrangian points, as a consequence of equation 9), 
although many other families do exist. 

 

 



Trajectories from L  1 
 In the nomenclature used in this paper, L1 is the collinear Lagrangian point that exists 
between the Sun and the Earth. It is located about 1,496,867 km from the Earth. Figure 2 
shows the results for the least expensive family of transfers to the Sun that was found in this 
research and Figure 3 shows the transfers to the Earth. The local minimum for a transfer to 
the Sun occurs for a time of flight close to 64 days, requires an energy E = -1.0101 and has a 
initial flight path angle of 90 deg. In terms of velocity increment (∆V) it means an impulse of 
29.5 km/s (0.9903 canonical units) applied at L1. For a transfer to the Earth, the minimum 
occurs for a time of flight close to 35 days, requires an energy E = -1.5004 and has a initial 
flight path angle of 248 deg. In terms of velocity increment (∆V) it means an impulse of 
0.298 km/s (0.01 canonical units) applied at L1. 
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Figure 2 - Transfers from L1 to the Sun. 
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Figure 3 - Transfers from L1 to the Earth. 

 

 



Trajectories from L  2 
 In the nomenclature used in this paper, L2 is the collinear Lagrangian point 

that exists behind the Earth. It is located about 1,506,915 km from the Earth. Figure 4 shows 
the results for the least expensive family of transfers to the Sun that was found in this 
research and Figure 5 shows the transfers to the Earth. The local minimum for a transfer to 
the Sun occurs for a time of flight close to 64 days, requires an energy E = -0.9896 and has a 
initial flight path angle of 88 deg. In terms of velocity increment (∆V) it means an impulse of  
30.1 km/s (1.0104 canonical units) applied at L1. For a transfer to the Earth, the minimum 
occurs for a time of flight close to 35 days, requires an energy E = -1.5004 and has a initial 
flight path angle of 67 deg. In terms of velocity increment (∆V) it means an impulse of  m/s 
(canonical units) applied at L1. 
 
 

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Y

X

L2 Sun

Motion

 

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0 20 40 60 80 100 120 140
Transfer Time (days)

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
Transfer Time (days)  

 
Figure 4 - Transfers from L2 to the Sun. 
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Figure 5 - Transfers from L2 to the Earth. 

 

 



Trajectories from L  3 

 In the nomenclature used in this paper, L3 is the collinear Lagrangian point that exists 
on the opposite side of the Sun (when compared to the position of the Earth). It is located 
about 149,595,740 km from the Sun, what means that it is almost at the same distance that the 
Earth is, but in the opposite direction. Figure 6 shows the results for the least expensive 
family of transfers to the Sun that was found in this research and Figure 7 shows the transfers 
to the Earth. The local minimum for a transfer to the Sun occurs for a time of flight close to 
70 days, requires an energy E = -0.9965 and has a initial flight path angle of 275 deg. In 
terms of velocity increment (∆V) it means an impulse of 29.9 km/s (1.0035 canonical units) 
applied at L1. For a transfer to the Earth, the minimum occurs for a time of flight close to 169 
days, requires an energy E = -1.4390 and has a initial flight path angle of 253 deg. In terms of 
velocity increment (∆V) it means an impulse of 10.4 km/s (0.3493 canonical units) applied at 
L1. 
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Figure 6 - Transfers from L3 to the Sun. 
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Figure 7 - Transfers from L3 to the Earth. 

 

 



Trajectories from L  4 
 L4 is one of the triangular Lagrangian points. Its location is the third vertice of the 
equilateral triangle formed with the Sun and the Earth, in the semi-plane of positive y. In the 
present case under study (Sun-Earth system) it is a stable equilibrium point. It is a very 
important point, because it is an excellent location for a space station. Its stability property 
makes the fuel required for station-keeping almost zero. Figure 8 shows the results for the 
least expensive family of transfers to the Sun that was found in this research and Figure 9 
shows the transfers to the Earth. The local minimum for a transfer to the Sun occurs for a 
time of flight close to 64 days, requires an energy E = -0.9999 and has a initial flight path 
angle of 29 deg. In terms of velocity increment (∆V) it means an impulse of 29.8 km/s 
(1.0001 canonical units) applied at L1. For a transfer to the Earth, the minimum occurs for a 
time of flight close to 174 days, requires an energy E = -1.4790 and has a initial flight path 
angle of 313 deg. In terms of velocity increment (∆V) it means an impulse of 6.1 km/s 
(0.2049 canonical units) applied at L1. 
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Figure 8 - Transfers from L4 to the Sun. 
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Figure 9 - Transfers from L4 to the Earth. 

 

 



Trajectories from L  5 
 L5 is the other triangular Lagrangian point. Its location is the point symmetric to L4 (in 
relation to the "x" axis), the third vertice of the equilateral triangle formed with the Earth and 
the Moon, in the semi-plane of negative y. It is also stable and a very important point, for the 
same reasons that L4 is an important point. Figure 10 shows the results for the least expensive 
family of transfers to the Sun that was found in this research and Figure 11 shows the 
transfers to the Earth. The local minimum for a transfer to the Sun occurs for a time of flight 
close to 64 days, requires an energy E = -0.9999 and has a initial flight path angle of 149 deg. 
In terms of velocity increment (∆V) it means an impulse of 29.8 km/s (1.0001 canonical 
units) applied at L1. For a transfer to the Earth, the minimum occurs for a time of flight close 
to 291 days, requires an energy E = -1.4910 and has a initial flight path angle of 252.40 deg. 
In terms of velocity increment (∆V) it means an impulse of 4.0 km/s (0.1342 canonical units) 
applied at L1. 
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Figure 10 - Transfers from L5 to the Sun. 
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Figure 11 - Transfers from L5 to the Earth. 

 
Comparison between the trajectories 

 The results show that it is much more expensive (in terms of energy and ∆V) to go to 
the Sun from the Lagrangian points than to go to the Earth. For all points considered here 
there is a family of small ∆V transfers to the Earth and those families were not found in the 
case of transfers to the Sun. The physical explanation is that the Sun, the Earth and the 
Lagrangian points are fixed points in the rotating system, but they are not fixed in the 
Sidereal (inertial) system. In the sidereal system, all bodies and points are rotating with unit 
angular velocity and it means that their linear velocity is equal to their distance from the 
center of the system. The Earth and the Lagrangian points have distances from the center of 
the system in the same order of magnitude (the approximate values are: Earth = 0.9999969, 
L1  = 0.9899909, L2  = 1.0100702, L3  = 1.0000013, L4  = L5  = 0.9999984), so their linear 
velocities are similar and a small ∆V is enough to cause an approximation and the rendezvous 
desired. 
 However, the Sun has a very small distance from the center (0.0000030359), and in 
consequence a very small linear velocity. As seen from the Sun, in the inertial coordinate 
system, to transfer a satellite from one of the Lagrangian points (or the Earth) to the Sun is 
equivalent to transfer a satellite from a high (about 1,500,000 km) circular orbit with a 
transverse velocity near 29.8 km/s (the circular velocity for this altitude) to the Sun. The best 
way to do it is to apply a ∆V of about 29.8 km/s in the opposite direction of the motion to 

 



reduce the velocity to a value in the order of magnitude of the velocity required by a 
Hohmann-type transfer (not the same value, because this is not a two-body problem, since the 
Moon is still acting in the system). The order of magnitude of this velocity is near zero, 
considering a two body Hohmann type transfer from the Lagrangian point to the center of the 
Earth. This means that a ∆V in the order of magnitude of 29.8 km/s is always required for 
those transfers, and there is no hope to reduce it by a large amount.  
 

8 - CONCLUSIONS 
 In this paper, the Lamaître regularization is applied to the planar restricted three-body 
problem to solve the Lambert's three-body problem (TPBVP) and it gives families of transfer 
orbits between the primaries and all the five Lagrangian points that exist in the Sun-Earth 
system. Those trajectories are shown and a comparison is realized. This comparison showed 
that transfers with small fuel consumption, that exist in transfers to/from the Earth, does not 
exist to/from the Sun. The results shown here can help mission designers to find useful 
trajectories for real spacecrafts. 
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