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A numerical study is reported on power law shaped leading edges situated in a rarefied hypersonic flow.  
The sensitivity of the heat flux and drag coefficient to shape variations of such leading edges is 
calculated by using a Direct Simulation Monte Carlo method.  Calculations show that the stagnation 
point heating on power law leading edges with finite radius of curvature follows the same relation for 
classical blunt body in continuum flow; it scales inversely with the square root of the curvature radius.  
Furthermore, for those leading edges with zero or infinity radii of curvature, the heat transfer behavior is 
in surprising agreement with that for classical blunt body far from the nose of the leading edges. 
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$ constant in power-law body equation 
F
 thermal velocity of the molecule, m/s 
& �  drag coefficient, 2F/ρ∞9∞

� + 
& �  heat transfer coefficient, 2T � /ρ∞9∞

�
 

H energy, J 
) drag force, N 
+ body height at the base, m 
.Q Knudsen number 
/ body length, m 
P mass, kg 
0 Mach number 
Q body power law exponent 
T heat flux, W/m2 
5 circular cylinder radius, m 
5 �  radius of curvature, m 
5 	  nose radius, m 
5H Reynolds number 

V arc length, m 
7 temperature, K 
9 velocity, m/s�
[ cartesian axis in physical space 
\ cartesian axis in physical space 
η coordinate normal to body surface 
ξ coordinate tangent to body surface 
λ mean free path, m 
ρ density, kg/m3 
θ wedge half angle, body slope angle, deg 
 
Subscript 
L refers to incident molecule 
U refers to reflect molecule 
Z wall conditions 
∞ freestream conditions 
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For flight at hypersonic speeds, dissociation and ionization of the air may have a considered effect on the 
aerodynamic characteristics of a body.  As aerodynamic heating may cause serious problems at these 
speeds, the removal of heat near the front of the body must be considered.  Since the stagnation region is 
the most thermally stressed zone, this particular region is of considerable practical as well as theoretical 
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interest.  For this purpose, the vehicle leading edges must be sufficiently blunt in order to reduce the heat 
transfer rate to acceptable levels, and possibly to allow for internal heat conduction.  The use of blunt-
nosed shapes tends to alleviate the aerodynamic heating problem since the heat flux for blunt bodies 
scales inversely with the square root of the nose radius.  In addition, the reduction in heating rate for a 
blunt body is accompanied by an increase in heat capacity, due to the increased volume.  However, 
designing a hypersonic vehicle leading edge involves a tradeoff between making the leading edge sharp 
enough to obtain acceptable aerodynamic and propulsion efficiency and blunt enough to reduce the 
aerodynamic heating in the stagnation region. 

Mason and Lee [1] have demonstrated that some geometrically blunt configurations may actually 
behave as if they were aerodynamically sharp.  Power law shapes (\a[ 	 , 0 < Q < 1) were shown to have 
an infinite body slope at the nose and yet have zero radius of curvature at the nose for certain values of 
power law exponent Q.  Their analysis describes the details of the geometry and aerodynamics of low-
drag axisymmetric bodies by using Newtonian theory.  However, one of the important aspects of the 
problem, stagnation point heat transfer, was not considered. 

A number of theoretical and numerical predictions of stagnation point heat transfer on blunt bodies 
has been reported in the literature [2-10].  The work of Fay and Riddell [5] is the reference point for the 
scientists working on aerodynamic heating.  Due to their simplicity, the Fay-Riddell correlation formulas 
are still in use today for the thermal analysis of hypersonic vehicles. 

Theoretical formulations, experimental data, and semi-empirical formulas [10] all agree in the fact 
that stagnation point heat transfer for blunt body in continuum flow is inversely proportional to the 
square root of the nose radius of the leading edge, i.e., 
 


5T 1∝  (1) 

 
In addition to the shape of the body, the stagnation point heat transfer is dependent on Mach number, 

Reynolds number and Knudsen number. 
The purpose of this paper is to investigate the effect of the power law exponent on the heat transfer to 

the body surface and the drag acting on the surface of such leading edges.  Attention will be addressed to 
the heat transfer behavior in comparison to the Eq. (1), since the radius of curvature for such shapes goes 
to zero or infinity for certain power law exponents. 

The flow conditions represent those experienced by a spacecraft at altitude of 70 km.  This altitude is 
associated with the transitional regime that is characterized by the Knudsen number .Q of the order of 
10-2 or larger.  Therefore, the focus of the present study is the low-density region in the upper 
atmosphere, where numerical gaskinetic procedures are available to simulate hypersonic flows.  High-
speed flows under low-density conditions deviate from a perfect gas behavior because of the excitation of 
rotation, vibration and dissociation.  At high altitudes, and therefore low density, the molecular collision 
rate is low and the energy exchange occurs under nonequilibrium conditions.  In such a circumstance, the 
degree of molecular nonequilibrium is such that the Navier-Stokes equations are inappropriate.  For the 
simulation of such complicated flow phenomena, models and assumptions that must be checked 
separately are necessary.  In the current study, Direct Simulation Monte Carlo method is used to calculate 
the rarefied hypersonic two-dimensional flow. 
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In dimensional form, the body power law shapes are given by the following expression, 
 

�$[\ =  (2) 
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where Q is the power law exponent and $ is the power law constant, which is a function of Q. 
The radius of curvature 5 �  for the shapes defined by Eq. (2), obtained from the general formula for 

the longitudinal radius of curvature, is as follows, 
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By taking the limit of Eq. (3) as [ → 0, one obtains the value of the radius of curvature at the nose of 

the leading edge.  The first term in the square bracket vanishes for Q ≥ 2, a range of not practical interest.  
The exponent of the second term in the bracket controls the result for practical cases.  For values of 0 < Q 
< 1, the nose radius goes to infinite for Q < 1/2, it is finite and equal to $2/2 for Q = 1/2 and goes to zero 
for Q > 1/2.  Therefore, only one value of Q produces a nonzero finite value for the leading-edge radius. 

The power-law shapes are modeled by assuming a sharp leading edge of half angle θ with a circular 
cylinder of radius 5 inscribed tangent to this wedge.  The power law shapes, inscribed between the 
wedge and the cylinder, are also tangent to the wedge and the circular cylinder at the same common point 
where they have the same slope angle.  It is assumed that the wedge half angle is 10 deg, the circular 
cylinder diameter of 10-2m and power law exponents of 1/4, 1/2 and 3/4, which yield infinite, finite and 
zero for the radius of curvature, respectively.  Figure 1 illustrates schematically this construction for this 
set of power law leading edges. 
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From geometric considerations, the power law constant $ is obtained by matching slope on the 

wedge, circular cylinder and power law body at the tangency point.  The common body height + at the 
tangency point is equal to �5FRVθ.  In this way, for the power law shapes to be investigated in this work, 
the power law constant $ and the body length / from the nose to the tangency point are listed in Table 1. 
 

7DEOH����&KDUDFWHULVWLFV�GLPHQVLRQV�RI�WKH�SRZHU�ODZ�VKDSHV�
Exponent Q�� � ����$[P ��� 	 ]      /[P]      /�+ 
1/4    1.70348 x 10-2  7.84964 x 10-3   0.774 
1/2    4.16711 x 10-2  1.39628 x 10-2   1.418 
3/4    8.94383 x 10-2  2.09442 x 10-2   2.127 

 
A geometrically blunt body is defined to be one with a slope (G\/G[ = ∞) at the tip that corresponds to 

an angle of 90 deg.  On the other hand, a geometrically sharp body is defined to be one with a finite slope 
(G\/G[ ≠ ∞) at the tip, and the leading-edge radius is zero.  The body slope angles at the nose ([ = 0) for 
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power law shapes are 90 deg for values of 0 < Q < 1.  Moreover, the radius of curvature changes from 
zero to infinity at the same range of Q.  Therefore, the power law shapes are blunt even though some of 
them have a zero nose radius.  As a result, some power law shapes exhibits both blunt and sharp 
geometric properties. 
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A number of significant problems in fluid mechanics involve transitional flows, i.e., flows for which the 
mean free path is of the same order of magnitude as a characteristic dimension.  The most successful 
numerical technique for modeling complex transitional flows has been the Direct Simulation Monte 
Carlo (DSMC) method [11].  It has been recognized as an extremely powerful technique capable of 
predicting an almost unlimited variety of rarefied flowfields in the regimes where neither the Navier-
Stokes nor the free molecular approaches are appropriate.  The DSMC method treats transitional flows on 
a molecular basis, statistically representing a real gas by thousands or millions of simulated molecules.  
The positions, velocities, and initial state of these simulated molecules are stored and modified in time in 
the process of molecules moving, colliding among themselves, and interacting with boundaries in 
simulated physical space.  The simulation time of the DSMC method is a real physical time and all 
DSMC calculations are treated as unsteady state.  The solution of the steady-state case is the asymptotic 
limit of the unsteady flow. 

In this study, the molecular collisions are modeled using the variable hard sphere (VHS) molecular 
model [12].  In this model, the temperature dependency of the viscosity is considered by a variable cross 
section that is inversely proportional to the relative collision energy between the colliding molecules.  
The energy exchange between kinetic and internal modes is controlled by Borgnakke-Larsen statistical 
model [13].  The essential feature of this model is that a part of collisions is treated as completely 
inelastic.  Simulations are performed using air as working fluid with two chemical species, N2 and O2.  
Energy exchanges between the translational and internal modes are considered.  The vibrational 
temperature is controlled by the distribution of energy between the translational and rotational modes 
after an inelastic collision.  The probability of an inelastic collision determines the rate at which energy is 
transferred between the translational and internal modes after an inelastic collision.  For a given 
collision, the probabilities are designated by the inverse of the relaxation numbers, which correspond to 
the number of collisions necessary, on average, for a molecule to relax.  The relaxation numbers are 
traditionally given as constants, 5 for rotation and 50 for vibration.  Diffuse reflection with full thermal 
accommodation is assumed for the gas-surface interaction modeling.  In this model, the reflection of the 
impinging molecules is not related to the pre-impingement state of the molecules. 

The physical space is divided into a certain number of regions, which are subdivided into 
computational cells.  The dimensions of the cells must be such that the change in flow properties across 
each cell is small compared to the mean free path.  The cell provides a convenient reference for the 
sampling of the macroscopic gas properties.  The smallest unit of physical space is the subcell, where the 
collision partners are selected for the establishment of the collision rate.  Time is advanced in discrete 
steps such that each step is small in comparison with the mean collision time, which is defined as the 
mean time between the successive collisions suffered by any particular molecule.  A view of the 
computational domain is depicted in Figure 2.  Only half of the body needs to be considered because of 
its symmetry.  The computational domain is made large enough so that the upstream and side boundaries 
can be specified as freestream conditions.  The flow at the downstream outflow boundary is 
predominantly supersonic and vacuum conditions are specified [11]. 

Numerical accuracy in DSMC method depends on the grid resolution chosen as well as the number 
of particles per computational cell.  Both effects were investigated to determine the number of cells and 
the number of particles required to achieve grid independence solutions for the thermal nonequilibrium 
flow that arises near the leading edges.  A discussion of both effects on the aerodynamic surface 
quantities is described in the appendix. 
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The freestream and flow conditions used in the present calculations are those given by Bertin [14] 

and summarized in Table 2.  The freestream velocity 9∞ is assumed to be constant at 2.9 Km/s, which 
corresponds to freestream Mach number 0∞ = 10.  The wall temperature 7 �  is assumed constant at 880 K, 
chosen to be four times the freestream temperature.  The overall Knudsen number is defined as the ratio 
of the molecular mean free path in the freestream gas to a characteristic dimension of the flowfield.  In 
the present study, the characteristic dimension was defined as being the diameter of the circular cylinder.  
Therefore, the freestream Knudsen number corresponds to .Q∞ (= λ∞/�5) = 0.0903.  Finally, the 
freestream Reynolds number by unit meter 5H∞ is 17889. 

 
7DEOH����)UHHVWUHDP�&RQGLWLRQV�
Parameter     Value   Unit 
Altitude     70   km 
Temperature (7∞)    220.0   K 
Pressure (S∞)    5.582   N/m2 
Density (ρ∞)    8.753 x 10-5  kg/m3 
Viscosity (µ∞)    1.455 x 10-5  Ns/m2 
Number density (Q∞)   1.8209 x 1021  m-3 
Mean free path (λ∞)    9.03 x 10-4  m 
Molecular weight    28.96   kg/kg mole 
Molecular mass  O2  5.312 x 10-26  kg 
Molecular mass  N2  4.65 x 10-26  kg 
Molecular diameter  O2  4.01 x 10-10  m 
Molecular diameter  N2  4.11 x 10-10  m 
Mole fraction  O2  0.237 
Mole fraction  N2  0.763 
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Attention is now focused on the heat transfer calculations and on the drag coefficient obtained from the 
DSMC results.  The simulations were performed, as mentioned above, for power law exponents of 1/4, 
1/2, and 3/4.  The present calculations correspond to freestream Mach number of 10, wall temperature of 
880 K, and freestream conditions associated to an altitude of 70 Km. 
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The heat flux to the body is calculated by the net energy fluxes of the molecules impinging on the 
surface.  A flux is regarded as positive if it is directed toward the surface.  The heat flux T �  is related to 
the sum of the translational, rotational and vibrational energies of both incident and reflected molecules 
as defined by, 
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where 1 is the number of molecules colliding with the surface by unit time and unit area, P is the mass of 
the molecules, F′  is the thermal velocity of the molecules, H�  and H �  stand for the rotational and 
vibrational energies, and subscripts L and U refer to incident and reflected molecules. 

The heat flux T �  is based upon the gas-surface interaction model of fully accommodated, completely 
diffuse re-emission.  This is the most common model assumed, even though it is well known that some 
degree of specular reflection and less than complete accommodation are more realistic assumptions [15]. 

The heat flux is normalized by òρ∞9∞

�
, which corresponds to 1.15 MW/m2 for the freestream 

conditions, and presented in terms of heat transfer coefficient & � .  The effect of the power law exponent 
on the heat transfer coefficient & �  is illustrated in Figure 3(a) as a function of the dimensionless arc 
length V�λ∞ measured from the stagnation point.  It is seen that the heat transfer coefficient is sensitive to 
the power law exponent Q near the stagnation point.  It presents the maximum value in the stagnation 
point and drops off a short distance away of the leading edge as the power law exponent increases.  Also, 
it is seen that the blunter the leading edge the lower the heat transfer coefficient in the stagnation region. 
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The leading edge geometry effect can also be seen by comparing the computational results with that 
predicted by free molecular flow (Bird [11]).  Figure 3(b) displays this comparison for the heat transfer 
coefficient as a function of the body slope angle θ.  These curves indicate that the heat transfer 
coefficient & �  increases as the leading edge becomes sharp, and approaches the free molecular value for 
the conditions investigated in this work. 

Based on the computational results for the heat transfer coefficient (Figures 3(a-b)), the characteristic 
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of blunt bodies expressed by Eq. (1) seems to fail at the stagnation point, at least for power law bodies 
with Q ≠ 1/2.  The heat flux is finite at the stagnation point for the leading edges investigated, even 
though the radii of curvature go to zero for the Q = 3/4 case, and go to infinity for the Q = 1/4 case. 

In order to verify the dependence of the heat transfer coefficient & �  on the leading edge radius of 
curvature, the product & � √(5 � /λ∞), named here by function .(Q), is obtained from the DSMC results for 
the power law shapes investigated.  Figures 4(a) (linear scaling) and 4(b) (log scaling) demonstrate this 
product as a function of the dimensionless arc length along the body surface.  Interesting features can be 
drawn from Figures 4(a-b).  In the vicinity of the stagnation point, the dependence of the heat transfer 
coefficient on the radius of curvature follows that predicted by the continuum flow, Eq. (1), for the power 
law shape with finite radius, Q = 1/2 case.  As would be expected, the dependence of the heat transfer 
coefficient on the radius of curvature in the stagnation region does not hold for power law leading edges 
defined by cases with Q ≠ 1/2.  Furthermore, the function .(Q) tends to a constant value downstream to 
the stagnation region for the cases investigated.  The constant value, which is a function of the power law 
exponent, is reached faster for the Q = 3/4 than for the Q = 1/4 case.  As a result, it is seen that the heat 
transfer to the body is inversely proportional to the square root of the curvature radius of the power law 
shapes far from the stagnation region, independently of the power law exponent. 

Referring to Figures 4(a-b), at first glance, one could conclude that power law shape defined by Q = 
3/4 gives lower value for heat flux at the stagnation point than Q = 1/2 shape.  Unfortunately, this does 
not hold as is demonstrated in Figure 3. 
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The drag on a surface in a gas flow results from the interchange of momentum between the surface 
and the molecules colliding with the surface.  The total drag is obtained by the integration of the pressure 
and shear stress distributions from the nose of the leading edge to the station /, which corresponds to the 
tangent point common to all of the body shapes (see Figure 1).  It is important to mention that the values 
for the total drag presented in this section were obtained by assuming the shapes acting as leading edges.  
Therefore, no base pressure effects were taken into account in the calculations.  Results are normalized 
by òρ∞9∞

� + and presented as total drag coefficient & �  and its components of pressure drag coefficient 
and skin friction drag coefficient. 

Figure 5(a) illustrates the total drag coefficient as a function of the power law exponent Q.  The 
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contributions of the pressure drag coefficient and the skin friction coefficient are also displayed in this 
Figure.  For Q = 1/4 case, the total drag coefficient is dominated by pressure drag, a characteristic of a 
blunt body.  In contrast, for Q = 3/4, the total drag coefficient is dominated by the skin friction drag, a 
characteristic of a sharp body.  As the net effect on total drag depends on these opposite behaviors, 
appreciable changes are observed in the total drag coefficient for the power law exponent range 
investigated.  As a reference, the total drag coefficient for the Q = 1/4 case is around 24% higher than that 
for the Q = 3/4 case. 

Figure 6(b) displays the percentage of the skin friction drag and pressure drag on total drag.  It is 
seen that for power law exponent of 1/4, the shear forces account for 9% of the total drag forces on the 
leading edge, whereas for power law exponent of 3/4, it accounts for 68%. 
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Through the use of DSMC method, the heat flux to and drag acting on power law shapes have been 
investigated.  The calculations provided information concerning the nature of the heat transfer coefficient 
and the total drag coefficient along the body surface resulting from variations in the body shape for the 
idealized situation of two-dimensional hypersonic rarefied flow.  Results for power law exponents of 1/4, 
1/2, and 3/4 indicate that the heat flux approaches that one predicted by the free molecular flow as the 
power law shape becomes aerodynamically sharp, for the flow conditions considered.  A substantial 
reduction of the aerodynamic heating at the stagnation point is observed as the power law exponent 
decreases.  On the other hand, a power law exponent decrease is associated with a drag increase.  
Furthermore, the stagnation point heating for the power law shapes does not follow that one for classical 
blunt body in the vicinity of the leading edge for power law exponents different from 1/2.  Nevertheless, 
the heat transfer varies inversely with the square root of the radius of curvature far from the stagnation 
region. 
 
$33(1',;�
This section focuses on the analysis of the influence of the cell size and the number of particles per 
computational cell on the surface properties in order to achieve grid independence solutions.  The effect 
of grid resolution on computed results is of particular interest for the present study since insufficient grid 
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resolution can reduce significantly the accuracy of the predicted aerodynamic heating and forces acting 
on the body surface.  Hence, heat transfer, pressure and skin friction coefficients were used as the 
representative parameters for the grid sensitivity study.  However, because of the reduced number of 
pages in the paper, the analysis will be shown only for heat transfer coefficient related to the Q = 1/2 case. 

The effect of altering the size of the computational cells is investigated for a series of three 
simulations with grids of 35 (coarse), 70 (standard) and 105 (fine) cells in the ξ-direction and 50 cells in 
the η-direction (see Figure 2).  Each grid was made up of nonuniform cell spacing in both directions.  
The effect of changing the number of cells in the ξ-direction is illustrated in Figure A(a) as it impacts the 
calculated heat transfer coefficient.  The comparison shows that the calculated results are rather 
insensitive to the range of cell spacing considered. 
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In analogous fashion, an examination was made in the η-direction.  The sensitivity of the calculated 

results to cell size variations in the η-direction is displayed in Figure A(b) for heat transfer coefficient.  In 
this Figure, a new series of three simulations with grid of 70 cells in the ξ-direction and 25 (coarse), 50 



 

   

10

(standard) and 75 (fine) cells in the η-direction is compared.  The cell spacing in both directions is again 
nonuniform.  According to Figure A(b), the results for the three grids are approximately the same, 
indicating that the standard grid, 70 X 50 cells, is essentially grid independent.  For the standard case, the 
cell size in the η-direction is always less than the local mean free path length in the vicinity of the 
surface. 

A similar examination was made for the number of molecules.  The sensitivity of the calculated 
results to number of molecule variations is demonstrated in Figure A(c) for heat transfer coefficient.  The 
standard grid, 70 x 50 cells, corresponds to a total of 112,300 molecules.  Two new cases using the same 
grid were investigated.  These new cases correspond to, on average, 63,600 and 170,300 molecules in the 
entire computational domain.  It is seen that the standard grid with a total of 112,300 molecules is enough 
for the computation of the aerodynamic surface quantities. 
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