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AbstractAbstractAbstractAbstract
A kinetic mechanism describing the growth of boron 
nitride films was developed. The gas-phase mechanism 
includes 35 species and 1012 reactions and also extends 
a previous mechanism that contained 26 species and 67 
elementary reactions. Rate constants for 117 elementary 
reactions were obtained from published 
experimental/theoretical data and those for the other 
895 reactions should be estimated using Transition State 
Theory(TST). In this work we present the rate constants 
for the title reaction. So, direct dynamic method was 
applied, which use information on equilibrium 
geometries, electronic structure energy, first and second 
energy derivatives calculated via electronic structure. 
With these information, the rate constant were calculated 
for the temperature range 200-4000K, using our own 
code.



IntroductionIntroductionIntroductionIntroduction
Ø There has been considerable interest in recent years, in 

the growth of boron nitride thin films

Ø Like carbon, boron nitride has different allotropes, the 
hexagonal (hBN) and cubic (cBN) phases

Ø The hexagonal phase, although electrically insulating, 
has properties that are very similar to graphite while 
the cubic phase has properties comparable to diamond

Ø There is little understanding of the chemical process 
which are involved in and which control the synthesis of 
either hBN or cBN from the vapor phase. 

Ø Theoretical research found in the literature includes 
thermodynamic equilibrium calculations for mixtures 
involving B/F/N/H and B/Cl/N/H, as well as limited 
kinetics studies of the reactions between BCl3 and NH3
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Tunneling CorrectionsTunneling CorrectionsTunneling CorrectionsTunneling Corrections
ØWigner:

Ø Eckart:
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Optimized GeometryOptimized GeometryOptimized GeometryOptimized Geometry
HF/6HF/6HF/6HF/6----31G(d)31G(d)31G(d)31G(d)
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ConclusionConclusionConclusionConclusion
We have studied the gas-phase BF3 + BH → BF2 + BHF 
abstraction reaction with the conventional transition state 
theory with the Wigner and the Eckart transmission 
coefficient using our own code. With these information, we 
calculated the reaction rate over a wide temperature range 
from 200-4000K. We found that the reaction rate obtained 
using conventional transition state, with or not the Wigner
and Eckart transmission coefficient have the same behavior 
in the high temperature range,1000-4000 K, that we are 
interested in.  Understanding the chemical process which are 
involved in and which control the synthesis of either 
hexagonal or cubic boron nitride from the vapor phase are 
the goal of our research. Furthermore, the results presented 
in this work could elucidate the BF3 decomposition that is 
very important for the kinetic mechanism information of 
boron nitride using as BF3, H2 and N2 as the gas source.


