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1. Introduction. Different bootstrap current formulations are employed in a self-consistent
equilibrium for tokamak plasmas where the total plasma current profile is supposed to have
contributions of the diamagnetic, Pfirsch-Schlüter, and the neoclassical ohmic and bootstrap
currents [1]. A comparison among the different bootstrap current models is performed for a
variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak
Esférico) [2], placed at the Associated Plasma Laboratory of INPE, in Brazil. The calculations
described here were performed using the Mathematica package in a PC type computer.

2. Equilibrium and Self-Consistent Calculation. A self-consistent equilibrium calculation,
valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique
where the extremum of the functional given by the internal plasma energy represents the flux
surface averaged Grad-Shafranov equation (GS) being, in this way, a solution to the plasma
equilibrium. This extremum establishes a relation between the total poloidal current, I(ρ),
between the symmetry axis and a given magnetic surface, denoted by the radial coordinate ρ,
and the total plasma current enclosed by this surface, IT(ρ), as follows [1]:
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where p(ρ) is the total plasma pressure profile and L(ρ), V(ρ) and K(ρ) are, respectively, the
inductance of the toroidal solenoid coincident with a given flux surface, the volume involved
by this surface and the inverse kernel used to calculate the self-inductance of the plasma loop.
The self- consistent calculation requires that the current profile which satisfies Eq. (1), has
also to be given by the sum of all current components, described by:
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where the first term on the rhs of Eq.(2) refers to the ohmic current (oh) modified by
neoclassical effects through the plasma conductivity, the second term to the bootstrap current
(bs) calculated through different models as described in the next section and the last term
results from a combination of the diamagnetic (dia) and the Pfirsch-Schlüter (ps) currents.
The brackets in Eq.(2) refer to the usual flux surface average and B

�

is the total induction in
the plasma. The self-consistent equilibrium is obtained when Eq.(2) is solved iteratively with
Eq.(1) as described in [1]. The loop voltage that enters in the ohmic current calculation is
determined consistently in order to reproduce the prescribed value of the total plasma current.

3. Bootstrap Current Models. Different bootstrap current models are listed in Table 1 and
classified according their validity regarding aspect ratio, collisionality or plasma impurity
level. The full matrix Hirshman-Sigmar (H-S) formulation for the bootstrap current estimate
is based on the solution of the system formed by the flux surface average of the parallel
momentum and heat flow balance equations for each species in the plasma, as follows [3]:
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The solution of this system provides the parallel fluid <ua//B> and heat <2qa///5pa> flows for each
species in terms of the thermodynamic flows (described through Va1 and Va2) and determines the
bootstrap current through the expression ∑=⋅ a B//auaeanBbsJ , where na and ea are

respectively the density and charge of species a. The Hirshman-Sigmar model is therefore suitable
for a multi-species plasma treatment since the equations in the system above are added
accordingly as the number of plasma species increases. lij

ab are the friction coefficients, which are

independent of the magnetic field configuration and so, valid in all collision frequency regimes.
Their formulae are found in [3]. The problem is then to calculate the viscosity coefficients µaj ,
since they depend on the plasma geometry and collisionality. We will make a comparison among

the H-S [3], Shaing [4] and Sauter´s [5] proposals regarding this calculation.
In order to compute the viscosity coefficients, the Hirshman-Sigmar model solves the

linearized drift kinetic (ldk) equation asymptotically in each collisionality regime and proposes a
formula continuously valid throughout the various regimes. However, in the plateau regime the
result is valid only for large aspect ratios. Shaing solves the ldk equation where the mass velocity
appears explicitly. The asymptotic values of his coefficients converge to the same values given by
the Hirshman-Sigmar model in the Pfirsch-Schlüter and in the banana regimes, when the H-S
banana coefficient is corrected by a 1/fc factor in order to reproduce the correct limit in the finite
aspect ratio banana regime (fc is the fraction of circulating particles in the plasma). In the plateau
regime Shaing´s coefficients are different from those derived by Hirshman-Sigmar. Both the H-S
and Shaing´s models consider, however, an approximated Coulomb collision operator which can
introduce errors up to 20% in the viscosity coefficients in the Pfirsch-Schlüter regime [3], which
could be a problem mainly in trying to model the plasma edge. Finally, Sauter solves ldk´s
equations for electrons and a single-ion species without considering plasma flows. In order to
solve these ldk´s equations, Sauter uses an adjoint formalism and does not make any assumption
regarding different collisionality regimes being, in this respect, completely general. Moreover,
Sauter considers the full Coulomb collision operator and solves the adjoint equations varying
aspect ratio, collisionality and ion charge Z. In this way, he proposes fitted formulae for the
bootstrap current and for the neoclassical conductivity, whose expressions depend basically on
these three parameters. For more accurate formulas regarding the ion charge dependence, Sauter
should solve the adjoint equations for electrons and for each ion species as it is stressed in his
paper. Multi-species effects are therefore approximately treated in his formulation by substituting
the ion charge Z by the effective ion charge in the plasma (Zeff). All the equations describing these
models are found respectively in [3,4,5].

Models Aspect Ratio Collisionality Impurities
Hinton-Hazeltine large all Single-ion (Zeff)

Hirshman all banana regime Single-ion (Zeff)
Hirshman-Sigmar large all Multi-Species

Shaing all all Multi-Species
Sauter all all Single-ion (Zeff)

Table 1: Different formulations for the bootstrap current estimate

4. Results and Discussions. Bootstrap current estimates provided by the full matrix Hirshman-
Sigmar model with the viscosity coefficients given by Shaing (H-S/Shaing model) and by the
fitted formulae proposed by Sauter, both for the bootstrap current and for the neoclassical



conductivity, are presented for the ETE low aspect ratio tokamak [2]. For Shaing´s model, we
compute the neoclassical conductivity according to the Hirshman, Hawryluk and Birge
(HHB) formulation [6]. In both cases, the trapped particle fraction is estimated according to
Lin-Liu and Miller [7]. The main ETE parameters correspond to aspect ratio A=R0(a)/a=1.5,
major radius R0(a)=0.3 m, plasma current Ip=200 kA, vacuum toroidal field BT=0.4 T (at
R0(a)=0.3 m), and plasma beta during the ohmic phase β=4-10%. The pressure, electron and
ion temperature profiles were taken as gaussian shaped functions as in f(ρ) = f(0) exp[-
αf (ρ/(wf-ρ))2], where f(0) determines the profile value at the axis, whereas αf and wf

determine the value at the boundary. We have also considered Te(0) = Ti(0),
Te(a) = Ti(a) = 0.03 keV and αTe = αTi = 0.2. As the pressure profile is given as a fixed input
in our code, the density profiles were derived from the fact that the total pressure in the
plasma is p = neTe + ∑k kTkn and from the quasi-neutrality condition ( ∑= k kke Znn ), with

the summations taken over all ion species. In Table 2, results provided by the self-consistent
calculation for hydrogen plasmas in the ETE tokamak, lead to bootstrap current fractions
roughly ranging from 10 to 35% for both models analysed according to the optimization level
of the plasma parameters. We can also observe, by comparing cases II and V, that plasmas
with higher shaped factors (higher elongation κ(a) in our case) generate higher fractions of
bootstrap current and that the presence of 2% of carbon in the plasma (Zeff=1.54) causes a
slight decrease in the bootstrap current fraction as noticed from cases II and III. Sauter
predicts slightly higher fractions of bootstrap current in relation to the H-S/Shaing model in
all cases analysed. The highest difference between the two models occurs for case IV (more
collisional with (Te(0) = 200 eV)). This may be due a combined effect resulting from the fact
that Sauter uses the complete Coulomb collision operator whereas Shaing uses the
approximated one, and that Shaing´s viscosity coefficients are derived from a different drift-
kinetic equation which may result in differences in relation to Sauter´s, mainly in the
transition banana-plateau or plateau-Pfirsch-Schlüter regimes.

p(0) (kPa) Te,i(0) (keV) ααααp κκκκ(a) ΙΙΙΙΤΤΤΤ(a)(kA) Zeff ββββI ββββ0 IbsShaing/IT(a) IbsFIT/IT(a)

I 15 0.5 3.0 2.0 200 1.54 0.54 0.09 0.36 0.37

II 10 0.4 3.0 2.0 200 1.00 0.36 0.06 0.23 0.25

III 10 0.4 3.0 2.0 200 1.54 0.36 0.06 0.22 0.24

IV 10 0.2 3.0 2.0 200 1.00 0.36 0.06 0.14 0.20

V 10 0.4 3.0 1.7 200 1.00 0.31 0.06 0.17 0.19

VI 10 0.4 3.0 1.7 180 1.54 0.38 0.06 0.22 0.23
Table 2: Plasma parameters for bootstrap current estimate provided by the self-consistent calculation

Figure 1 shows the total equilibrium current density profiles and all their different
components for case II in Table 2, both for the bootstrap current obtained from the
H-S/Shaing model (1a) and from the fitted formula proposed by Sauter (1b). For the
H-S/Shaing model the neoclassical conductivity used in the ohmic current calculation is
obtained from the HHB formulation [6] whereas in (1b) we have used Sauter´s fitted fomula
[5]. Figure 2 shows the comparison of the bootstrap current profiles obtained from different
models for cases II, III and IV. We can observe that, as the plasma becomes less collisional
(higher temperatures in the cases shown) all the models approach each other. For figures 2a
and 2b, the Hirshman collisionless model [8] always predicts more bootstrap current since it
does not take properly into account the collisionality dependence on the viscosity coefficients.
Still comparing figures 2a and 2b we see that as the Zeff increases the H-S/Shaing and Sauter´s
models approach each other. The strongest difference between the two predictions (fig. 2c)
occurs for the most collisional case (Te(0) = 200 eV) as previously mentioned. For the less
collisional plasma (fig.2d) all the models agree quite well. The self-consistent calculation



generated when the bootstrap current is determined by the fitted formulae is approximately
four times faster to compute than that provided when the H-S/Shaing model is used. Finally,
figure 3 shows the neoclassical and Spitzer conductivities calculated for the HHB formulation
and from the fitted formula, for case II, after the self-consistent calculation is achieved and
obtained for the bootstrap current calculated according to Sauter. The figure also shows the
reduction of the neoclassical conductivity in relation to Spitzer´s.

Figure 1: Current density profiles for case II in Table 2.The full line corresponds to the total equilibrium current
density, the dashed line is the ohmic contribution, the dash-dotted line is the sum of the diamagnetic and Pfirsch-
Schlüter components and the dotted line represents the boostrap current contribution.

Figure 2: Bootstrap current profiles obtained from different models

Figure 3: Neoclassical and Spitzer conductivities
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