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Abstract. Molecular dynamics algorithms are used in computational experiments simulating
the properties of liquids, solids and molecules. The n atoms or molecules in the simulation
are treated as point masses and Newton’s equations are integrated to compute their motion at
each time step. Parallel implementations of molecular dynamics algorithms use either particle
decomposition, force decomposition or space decomposition schemes in order to decompose
the domain. We present a parallel implementation for a driven molecular dynamics simulation
based on the particle decomposition method. The simulation of an adsorbed monolayer under
an external driving force, relevant for sliding friction phenomena of crystalline surfaces, is
used to test the parallel algorithm. The algorithm is suitable for both short-range and long-
range interactions and can also be converted to a space decomposition method for short-range
interactions. The code was parallelized using the MPI communication library. A logical ring
is defined in which each processor receives data from its left neighbor and sends data to the
right neighbor. This pipeline scheme takes advantage of the Newton 3rd law and drastically
reduces the number of redundant calculations. This scheme yields an efficient parallelization
and results show good speed-up’s running on a standard distributed memory parallel machine.
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1. INTRODUCTION

Molecular dynamics algorithms are often used in computational experiments simulating
the properties of liquids, solids and molecules. The n atoms or molecules in the simulation
are treated as point masses and Newton’s equations are integrated to compute their motion at
each time step (Allen, 1993, Rapaport, 1995). If the force between particles is additive and
acts along the line between them, this class of problems is also known as N-body problem
in computer science (Barnes and Hut, 1986, Singh et al., 1995). However, typical N-body
algorithms are designed for long-range forces and, because of their expense, are not commonly
used in classical molecular dynamics simulations (Plimpton, 1995).

To implement the molecular dynamics simulation, a potential energy functional is adopted
and individual force differential equations are derived for each of the n particles in the system.
The equations are then solved numerically, under appropriate boundary conditions, giving the
time dependence of the all particle positions and velocities. Usually, the temperature of the
system is kept constant on the average by readjusting the velocities such that the average kinetic
energy is constant. These simulations methods are important for the study of microscopic and
macroscopic properties such as transport coefficients, phase diagrams and structural properties.
In particular, recent work on friction properties of crystalline surfaces (Persson, 1998) has em-
ployed driven molecular dynamics simulation to study the sliding friction of adsorbed layers
under an external driving force (Persson, 1993, Granato and Ying, 2000). In this case, to insure
constant temperature, a stochastic method of integrating the dynamical equations, also known
as Brownian molecular dynamics (Allen, 1993), was used, which corresponds to coupling the
system (adsorbed layer) to a heat bath represented by additional random forces.

Molecular dynamic simulation are not memory intensive as the data structures are restricted
to vectors of dimension n that store the position, velocity and eventually other particle prop-
erties. However, the processing load is heavy due to the need of calculating interaction forces
between pairs of particles and therefore the algorithmic complexity scales as O(n?). In addi-
tion, a large number of time steps is usually required, specially in simulations of nonequilibrium
properties by driven molecular dynamics.

A simulation of an adsorbed monolayer under a driving force (Granato and Ying, 2000) is
used to test a parallel algorithm for driven molecular dynamics. The n particles are bound to
a 2D domain with periodic boundary conditions and constant density. The interaction energy
between each pair of particles is given by

=] (7)) |

where 7;; is the distance between particles z and 7, o is the natural equilibrium distance between
particles and e is the strength of the interaction potential. These are parameters that define the
Lennard-Jones potential. Because this potential is short ranged, it is sufficient to consider only
the interactions between particles that are at a radius less than a cut-off distance, due to its strong
exponential decay. Several algorithms take advantage of this simplification. In addition to the
interaction with other particles by the above potential, each particle of the adsorbed monolayer
also interacts with the substrate by the periodic potential

u(r;) = U,[2 — cos(2mz;/a) — cos(2my;/a)], (2)

where « is the lattice spacing of the substrate.



Parallel implementations of molecular dynamics algorithms use either particle decomposi-
tion, force decomposition or space decomposition schemes in order to decompose the domain
(Plimpton, 1995). This work presents a parallel implementation for the driven molecular dy-
namics simulation introduced above based on the particle decomposition method. The algo-
rithm is suitable for both short-range and long-range interactions and can also be converted to
a space decomposition method for short-range interactions. The code was parallelized using
the MPI communication library. A logical ring is defined in which each processor receives data
from its left neighbor and sends data to the right neighbor. This pipeline scheme takes advan-
tage of the Newton 3rd law and drastically reduces the number of redundant calculations. Even
considering a potential which requires the calculation of the interactions between all pairs of
particles, the scheme yields an efficient parallelization. Results show good speed-up’s running
on a standard distributed memory parallel machine.

2. BROWNIAN MOLECULAR DYNAMICS SIMULATION

In the Brownian dynamics simulation (Allen, 1993), also known as Langevin dynamics
simulation, thermal equilibrium at a specified temperature 7" is insured by a procedure that
mimics frequent collisions of the particles of the system with much lighter particles represent-
ing a heat bath and described by a random force distribution specified by the given reference
temperature 7" and a damping coefficient parameter n. The dynamics of the n particle system is
described by the stochastic equation
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where r; is the particle position and U = >, u(r;) and V' = > v(|r; — r;[) are giving by
Egs. (1) and (2). F is a uniform external force acting on each particle and f; is an uncorrelated
stochastic force, with zero average, and variance related to the damping coefficient parameter
n, the mass of the particles m and the temperature 7" by the fluctuation-dissipation relation

mr; + mnr; =
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where «, § represent the vector components. Typical quantities of interest in these simulations
are the equilibrium averaged potential energy of the system e,, defined as

e, =< %Zv(rzj) + Zu(rz) > for F=0 , (5)
7] i
and the center of mass mobility, defined as p = v,/ F for small F, where v,,, is the center of
mass velocity. These quantities have been used to monitor the parallelization scheme.

The dynamical equations are solved numerically in discrete time steps using a simple leap-
frog type scheme (Allen, 1993). The force between the n particles in each time step, corre-
sponding to the 1st term on the righthand side of Eq. 3, is calculated by adding the forces
between all pairs of particles. This requires O(n?) computations. Considering a parallel im-
plementation of this algorithm, if the n particles are distributed among p processors, O(p?)
communications between processors will be required during each time step of the simulation.
If the force between particles falls rapidly with distance, as for the Lennard-Jones potential in
Eg. 1, the influence of distant particles becomes negligible. In this case, a cut-off distance can
be employed to reduce the number of computations.



3. PARALLEL PROGRAMMING

The prevailing trend in the search for high performance is the use of parallel machines due
to their good cost effectiveness. Two parallel architectures are usually considered: shared mem-
ory and distributed memory machines. In the former class, the multiprocessors, all processors
access a unique memory address space and there are scalability constraints. In the latter class,
off-the shelf machines called nodes are interconnected by a network composing a multicom-
puter or cluster. In the case of hundreds or thousands of nodes using a very fast interconnection
scheme the multicomputer is called a MPP (massive parallel processors).

The processors of each node access only their local memories and data dependencies be-
tween node memories enforce communication by means of routines of a message passing li-
brary, like MPI (Message Passing Interface) or PVM (Parallel Virtual Machine). All current
world top performance machines (supercomputers) are MPP’s (Foster, 1995). Another point
is the use of scalar or vector processors in parallel machines. The use of vector processors is
restrained to specialized applications as wheather forecasting due to cost issues, but even in
this area there is a migration from shared-memory vector-processor nodes to scalar-processor
MPP’s.

MPI supports the SPMD (single program multiple data) scheme in which each proces-
sor/node executes the same subset of instructions in a subdomain of data defined according
to its rank (Pacheco, 1996). Data dependencies between processors require calls to the MPI
library. On the other hand, a single processor/node may perform tasks like gathering partial
results obtained by every node and broadcasting the global result to all other nodes, also by
means of MPI calls.

An important issue in parallel programming is to maximize the amount of computation
done by each processor and to minimize the amount of communication, due in this case to
MPI calls, in order to achieve good performance. This is defined as granularity, the amount of
processing between processor communication/synchronization. This is particularly important
in multicomputers as the communication latency is relatively high. However, the code must be
instrumented in order to obtain timing and profiling data that will be used to select the parts of
the code that will be parallelized (Stephany et al., 2000).

The speed-up S,(n, p) is defined as the ratio between the sequential execution time 7 (n)
and the parallel execution time 7},(n, p) for p processors and a problem of size n. In this work, n
denotes the number of particles. A linear speed-up denotes that processing time was decreased
by a factor of p when using p processors and can be thought as a kind of nominal limit.

Ts(n)
Tp(n,p) ’
The efficiency E,(n, p) is defined as the ratio of the speed-up by p and thus it is 1 for a linear

speed-up. Usually, communication penalties cause E,(n,p) < 1 and particularly, a slowdown
occurs if E,(n,p) < 1/p.

Sp(n,p) =

Ey(n,p) = 22™P) 0 < Ey(n,p) < 1 )

p

Exceptionally, as data is partioned among processors, cache memory access can be optimized
in such way that superlinear speed-up’s can be attained, i.e. S,(n,p) > p and E,(n,p) > 1
(Campos Velho et al., 2002).



4. THE CIRCULAR PIPELINE ALGORITHM

The sequential code was parallelized using the MPI (Message Passing Interface) message
passing communication library (Gropp et al., 1999). A particle decomposition scheme was
adopted with sets of particles being assigned to each processor. A logical ring is defined in
which each processor receives interaction force data from its left neighbor and sends it to the
right neighbor taking advantage of the Newton 3rd law to reduce redundant calculations. At ev-
ery time step each processor calculates interaction forces and exchange part of this data in order
to update velocity and position of its particles. The coordinates of all particles are broadcasted
at the end of the time step also using a logical ring scheme. Denoting by p the number of pro-
cessors, the total number of force-interaction calculations in the sequential case is given by the
classical formula [n%/2 — n /2], while the total number of calculations in this implementation,
using p processors, is given by

(5% ®

Therefore, the penalty in the number of calculations for the parallel version is proportional to
[(p+ 1)/p]. This penalty scales very well with p. Although a cut-off distance is used in this
parallel implementation in face of the Lennard-Jones potential, it could be used for any long
range potential, or any N-body problem. On the other hand, it can be further optimized for
short range potentials by spatially grouping the particles among processors in addition to the
logical grouping. This would require an update of processor particles at a defined interval of
time steps.

Denoting by local forces the interaction-forces between particles of the same processor p;
and by remote forces those between particles of processor p; and particles of other processors
p;. Each processor computes a set of local forces and (p — 1) sets of remote forces. A pos-
sible straightforward parallel algorithm, executed in each processor p; and using MPI can be
expressed by

FOR EACH TI MESTEP DO
CALCULATE LOCAL FORCES F(ii)
FOR EACH PROCESSOR(j) DO
CALCULATE REMOTE FORCES F(ij)
ENDDO
CALCULATE RESULTANT FORCES
UPDATE VX(i), VY(i)
UPDATE X(i), Y(i)
BROADCAST X(i), Y(i), VX(i), VY(i)
FOR EACH PROCESSOR(j) DO
BROADCAST X(j), Y(j), VX(i)., VY(i)
ENDDO
ENDDO

In this pseudocode, the n-dimension vectors X and Y denote particle coordinates, while the
n-dimension vectors VX and VY, particle velocity components.

The general scheme of the interaction-force logical takes advantage of a logical ring for
exchanging forces and another one for positions. Therefore, two circular pipelines are imple-
mented, as follows



FOR EACH TI MESTEP DO
CALCULATE LOCAL FORCES F(ii)
FOR EACH PROCESSOR(j) DO
CALCULATE REMOTE FORCES F(ij)
| F SUl TABLE
SEND F(ij)
RECEI VE F(ji)
ENDI F
ENDDO
CALCULATE RESULTANT FORCES
UPDATE VX(i), VY(i)
UPDATE X(i), Y(i)
FOR EACH PROCESSOR(j) DO
SEND X(i), Y(i), VX(i), VY(i)
RECEI VE X(j), Y(i), VX(j), VY(j)
ENDDO
ENDDO

In the interaction-force logical ring, the “suitable” condition to be tested is related to number
of sets of remote forces that can be received from other processors making use of the Newton
3rd law. In this scheme, each processor computes a set of local forces and p/2 sets of remote
forces. For example, in the case of p = 10, instead of computing 9 sets of remote forces, each
processor computes only 5 sets. In the case p = 15, 7 sets, instead of 14. This is expressed by
Eq. 8.

5. PERFORMANCE RESULTS

In this work, parallel execution was performed on a distributed memory parallel machine
combining a low cost architecture and free software. This cluster is composed by 17 monopro-
cessed 1A-32 scalar nodes running Linux and a Fast Ethernet switch. A Fortran 90 (Metcalf
& Reid, 1999) optimizing compiler and the message passing communication libray MPI (Mes-
sage Passing Interface) were used to parallelize the code. Simulations were performed for up to
28800 particles and the reduction of the processing time for the parallel version in comparison
to the sequential one is shown in Table 1 and Fig. 1.

Table 1: Processing timesin seconds for 5, 10 and 15 processors and n particles

n p=5 p=10 p=15
4050 230.11 103.29 69.80
11250 1887.10 727.37 457.60
16200 3582.44 1497.16 936.20
28800 8323.00 4679.00 2901.70

This table contains the processing times for some simulations depicted in the latter figure
and show that this algorithm, executed in this low cost parallel architecture, is suitable for this
kind of computational experiments, yielding a a significant reduction of the processing time.

However, as shown in Fig. 2, the overhead caused by the parallelization makes it inefficient
for small number of particles. In this particular case, the sequential code runs faster up to 250
particles, but the parallel code speed-up very fast as the number of particles increase.
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Table 2 and Fig. 3 shows the speed-up considering two instances of n (9800 and 20000
particles) for different p’s (2, 5 and 10). As it would be expected, communication time tends to
increase as p increases and this penalty precludes a linear speed-up.

Table 2: Speed-up for 9800 and 20000 particles

n p=2 p=5 p=10
9800 13 4.2 7.5
20000 11 3.8 6.8

10 T R T T T T T T
‘linear’

'9800 particles’ -------
'20000 particles’ --------

Speed-up

1 o 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10

Number of processors

Figure 3: Speed-up for 9800 and 20000 particles

Finally, Fig. 4 show how the total execution time compares to the processing and commu-
nication times for the simulations using 10 processors and up to 28800 particles. It should be
pointed out that this figure shows the minimum processing and maximum communication times
among the p processors in order to show the overhead due to interprocessor communication.

The instrumentation of the code in order to provide timing information is straightforward,
by means of calls to the MPI_WTIME() routine of the MPI library. At each time step, a simple
reduction operation, MPI_REDUCE, allows to collect the maximum and minimum processing
and communication times from all the processors and to accumulate these partial times for the
whole simulation.

Despite the communication penalty, the timing results show that the algorithm scales well
since a good granularity is obtained for the considered number of processors p used in the
current architecture and the number of particles n of the test cases. Another point is that for
this particular simulation, to increase the number of time steps can be more interesting rather
than increasing the number of particles n, provided that this quantity be sufficiently large to
represent the system of particles involved in the phenomenon.
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6. FINAL COMMENTS

As an illustration of useful physical information that can be obtained from these simula-
tions, we show in Figure 5 the behavior of the mobility 1 as function of temperature 7" for
a system containing 450 particles, using the parallel version of the computer code described
above. For temperatures below a critical value 7;,, ~ 1.2U,/k, the mobility vanishes indicat-
ing that the adsorbed layer is pinned by the periodic potential while above T,,, the mobility is
nonzero and the adsorbed layer is melted.

The insets in Fig. 5 show the equilibrium particle configurations of a portion of the system
at temperatures below and above T;,,. Grid lines represent the periodic potential of the substrate.
These configurations reveal that below T3, the particles are located at the minima of the peri-
odic potential (grid-lines intersections), forming a structure commensurate with the substrate,
corresponding to a solid phase. Above T,,, the structure is disordered as in a liquid phase.

The pinned solid phase and its melting transition at 7},, have important consequences for the
nonlinear response behavior of the adsorbed layer at large applied forces. Such behavior is par-
ticularly relevant for the study of sliding friction phenomena between two crystalline surfaces
(Persson, 1993, Persson, 1998, Granato and Ying, 2000).

It should be pointed that the physical results, like the ones described above, for different
temperatures, were required to validate the current parallel algorithm. These simulations are
very sensitive to numerical errors and using the numerical value of a single quantity for a fixed
temperature is not reliable enough, due to the stochastic nature of the dynamics described by
Eg. (3).

This work has shown that a cost effective architecture can be successfully employed to
perform high performance molecular dynamics simulations using standard software tools. A
O(n?) scaling, circular pipeline scheme was implemented for a molecular dynamics problem.
This scaling is still worst than O(nlogn), the Barnes-Hut algorithm (Barnes and Hut, 1986,
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Figure 5: Mobility i as afunction of temperature T' for n = 450 particles. Insets show particle con-
fi gurations of a portion of the system for T' < T;,, (left) and T' > T, (right). Grid lines represent the
periodic potential of the substrate.

Singh et al., 1995) scaling. However, the current algorithm can be further upgraded to take
advantage of short range potentials, Actually, a standard strategy, the spatial decomposition of
the domain, is currently being implemented, in order to decrease the number of interactions that
have to be computed at each time step and therefore to improve the speed-up and the efficiency.
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