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Motivation

Protection of Components for Spacecrafts Orbiting LEO

Low Earth Orbit (LEO) environment (180-650 km ): rich in atomic oxygen,
which degrades polymeric materials (such as Kapton, Mylar or Teflon) used in satellites.

May erode certain polymers
by over 2 um in 90 days

Oxygen resistant polymers could improve
the lifetime of satellites and space stations
and could find many applications in space,
including huge fold-up antennas,

inflatable mirrors & lenses, solar sails...

International Space Station
orbiting LEO region (450 km)



Materials International Space Station
Experiment — MISSE project

Trays of materials samples will expose 750
materials to LEO environment, for 18 months.

Oxidation protection: Thin layers of several metal oxides such as Al,O;, MgO, or SiO,,
are being studied as protective coatings for polymers in LEO

Thermal transients (-100° C to +100 ° C) : Superior adhesion of the thin film is required
— Metal Plasma Immersion lon Implantation and Deposition



PIII in polymers: charging of the dielectric is proportional to plasma density
Typically for ~ 20 um thick polymers:
n~10"m3 - AV~7kV  in2us
n~10°m3 — AV ~700V in 60us

In metal plasmas generated by vacuum arcs:
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Objectives

Aluminum implantation in Kapton® by three different methods

* Direct implantation in a magnetized Al plasma
* Direct implantation in an unmagnetized Al plasma

* Al deposition + implantation in nitrogen plasma (recoil implantation)
Resistance tests for space environment
* Oxygen degradation (oxygen plasmas)

* Thermal cycling
* Adhesion test



Direct Aluminum implantation

Vacuum Arc Plasmas: HV trigger: arc initiation I,. ~ (100-1k)A/50V
Plasma drift velocity ~ 10*m/s Lo, ~up to (5-10)% I

arc

Macroparticle Filtering systems:

cathodic arc
plasma source

substrate

Straight magnetic filter
not so good filtering
good plasma transport

filtered plasma+

Curved magnetic filter
good filtering Macroparticles avoided and deposition
minimized by orienting samples parallel

not so good plasma transport to plasma stream



Experimental Set-up
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Recoil Aluminum implantation

200 A aluminum film deposited by electron beam on a Kapton sample
(8.5cmx12cm) wound around sample holder. HV in contact with deposited film.

Implantation in Nitrogen plasmas: n~ 10" cm™, T_< 10 eV
HV pulses: 5 us, 100Hz, 5 kV
treatment time of 30 minutes
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Analysis

Elemental composition and morphology

+ RBS
« XPS
« SEM, EDS

Oxygen degradation
* Oxygen plasma: 40kHz parallel plate capacitive reactor
200 mTorr, 200W - n~10"cm3, T, ~ (1-2) eV
~ one hour exposure

Thermal cycling
* 1 minute liquid nitrogen immersion (-196 °C )
* 1 minute pre-heated oven (100 °C)
« 15cycles

Adhesion Test
« applying and removing a pressure sensitive tape + SEM



Oxygen Degradation
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Kapton sample implanted with Al in a magnetized plasma
RBS — retained doses of 10" atoms/cm?, but mostly at the surface
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XPS — formation of an ion mixing layer

Atomic Concentration (%)
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Kapton sample implanted with Al in a magnetized plasma

Without treatment
after oxygen

exposure —

Without treatment

Treated sample
after oxygen
exposure +

thermal cycling —
+ adhesion
tests




Kapton sample implanted with Al in an unmagnetized plasma

 Notuniform: good parts behave like magnetized case after exposure to O plasmas
bad parts behave like untreated case after exposure to O plasmas

 Possible causes: Insufficient dose
misalignment with
plasma stream




RBS — “good” parts — about 100A Al deposition mostly at surface
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« Kapton sample with Al deposition (200A) + nitrogen plasma implantation

* Formation of cracked film — probably stressed aluminum nitride
* Loss of transparency




* RBS - Al deposited mostly at surface
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Conclusions

Kapton samples implanted with Al in a magnetized vacuum arc discharge
resulted in excellent protection of the polymer against oxygen degradation.

Retained doses of 10'® atoms/cm? were obtained, and although most of the
atoms are concentrated on the surface, an intermediate ion mixing layer was
formed.

Adhesion test after thermal cycling shows good adhesion to the substrate.

Implantation with Al in non-magnetized plasmas needs much longer treatment
times, incompatible with present machine configuration.

Al deposition by e-beam, followed by recoil implantation in a nitrogen plasma
resulted in a cracked film, probably due to the formation of a stressed
aluminum nitride film. Recoil implantation in an argon plasma is underway.
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