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ABSTRACT 
 
In this paper we present the cause/effect relation between the thrust vector errors and the final orbit 
semi-major axis to the spatial vehicles orbital transfer, under non linear and stochastic keplerian 
dynamic with optimum fuel consumption. We found the algebraic relations which represent the 
dynamic effect along the transfer maneuver and the final trajectory, through the semi-major axis and 
the deviations produced in the thrust vector. These results confirmed the JSP1 curves family, found 
before in the Monte-Carlo analysis, which showed the loss of optimality and the order precision in the 
vehicles final trajectory. The relations showed these effects in the final orbit are proportional to the 
even power of the causes deviations. 
 
 
INTRODUCTION 
 
The nonlinear keplerian dynamic introduces difficult for the analytical solution of the actual orbital 
transfers. Only the Two Body Problem has analytical solution for the  gravitational force between the 
bodies. The transfers maneuvers involves others forces effects, particularly, the thrust vector to the 
propulsion system. So, we do not have the analytical solution for the general and actual orbital 
transfers problem. Besides these difficult, associate to the non-ideal propulsion system (actual) there 
are many deviations causes.  The mathematical treatment exact in these cases is not efficient. In 
general, the differential equations are simplified and the solution loss the important information about 
the fenomenum studied. This paper presents results algebraic about the orbital transfers under thrust 
deviations. Most space missions need trajectory/orbit transfers and they have linear and/or  angular 
misalignments that displace the vehicle with respect its nominal directions. The mathematical 
treatment for these deviations can be realized under many approaches. In the deterministic approach 
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we can review Schwend and Strobl (1977), Tandon (1988), Rodrigues (1991), Santos-Paulo (1998), 
Rocco (1999) and Schultz (1997), among others. 
 
In the probabilistic approach Porcelli and Vogel (1980) presented an algorithm for the determination 
of the orbit insertion errors in biimpulsive noncoplanar orbital transfers (perigee and appogee), using 
the covariance matrices of the sources of errors. Adams and Melton (1986) extended such algorithm 
to ascent transfers under a finite thrust, modeled as a sequence of impulsive burns. They developed an 
algorithm to compute the propagation of the navigation and direction errors among the nominal 
trajectory, with finite perigee burns. Rao (1993) built a semi-analytic theory to extend covariance 
analysis to long-term errors on elliptical orbits. Howell and Gordon (1994) also applied covariance 
analysis to the orbit determination errors and they develop a station-keeping strategy of Sun-Earth L1 
libration point orbits. Junkins (1996) et alli and Junkins (1997) discussed the precision of the error 
covariance matrix method through nonlinear transformations of coordinates. He also found a 
progressive deformation of the initial ellipsoid of trajectory distribution (due to gaussian initial 
condition errors), that was not anticipated by the covariance analysis of linearized models with zero 
mean errors. Carlton-Wippern (1997) proposed differential equations in polar coordinates for the 
growth of the mean position errors of satellites (due to errors in the initial conditions or in the drag), 
by using an approximation of Langevin's equation and a first order perturbation theory. Alfriend 

(1999) studied the effects of drag uncertainty via covariance analysis. In the mimimax approach the 
russian authors are mainly. 
 
However, all these analyses are approximated. This motivated an exhaustive numerical (Jesus, 
2000a,b) but exact analysis (by Monte-Carlo), and a partial algebraic analysis done by Jesus (1999). In 
this work we present the first part of the algebraic analysis of nonimpulsive orbital transfers under 
thrust errors. The results were obtained for two transfers: the first, a low thrust transfer between high 
coplanar orbits (we call it "theoretical transfer"), used by Biggs (1978,1979) and Prado (1989); the 
second, a high thrust transfer between middle noncoplanar orbits (the first transfer of the EUTELSAT 
II-F2 satellite, we call it "practical transfer") implemented by Kuga (1991) et alli. The simulations 
were done for both transfers with minimum fuel consumption. The "pitch" and "yaw" angles were 
taken as control variables such that the overall minimum fuel consumption defines each burn of the 
thrusters. The errors sources that we considered were the magnitude errors, "pitch" and "yaw" 
directions errors of the thrust vector, as causes of the deviations found in the several keplerian 
elements of the transfer trajectory. These error sources (random-bias and white-noise errors) 
introduced in the orbital transfer dynamics produce effects in the final orbit keplerian elements in the 
final instant. 
 
In this work we present an algebraic analysis of the effects of these errors on the mean of the 
deviations of the keplerian elements of the final orbit with respect to the reference orbit (final orbit 
without errors in the thrust vector) for both transfers. The approach that we used in this work for the 
treatment of the errors was the probabilistic one, assuming these as having zero mean unit variance 
gaussian probability density function and having zero mean uniform probability density function. 
 
 
NONIMPULSIVE AND COPLANAR ORBITAL MANEUVERS – ALGEBRAIC ANALYSIS  
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The orbital transfer problem studied was formulated for the minimum fuel consumption with respect 
to thrust direction, that is, w.r.t. the “pitch” (α) and “yaw” (β) angles,  subjected to the dynamics in 
inertial coordinates, helped by the instantaneous keplerian coordinates (Ω,I,ω,f, a, e) and rewriting by 
the other coordinate system centered in the satellite and the 9 state variables, defined and used by 
Biggs(1978,1979) and Prado (1989). The geometric development of these coordinates systems can be 
found in Jesus (2002). In the centered-satellite-system we decomposed the actual thrust vector in three 
components, radial, transversal and normal directions.  
 
The orbital transfers can be economic or spent. Those more economics orbits are of the practical 
interest and the most them occur in-plane, that is, with the "yaw" angle null (β=0). That is, the general 
and preferential missions are those without plane change. The numerical results found by Jesus (1999) 
showed too dependence of the semi-major axis deviations with “yaw” deviations. In this paper, we 
choose for our algebraic analysis the in-plane (α ≠0 and β=0) transfer maneuvers. We choose too, F 
and m constants. 
 
We can write the move plane equations: 
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with,  

Ft and Fr the transversal and radial components of the thrust vector, respectively; 
)(),( tvtv rt &&  the transversal and radial components of the accelerations, respectively; 
)(),( tvtv rt  the transversal and radial components of the velocities, respectively; 

)(tf&  the angular velocity; 
 r(t) the vector position between satellite and central body. 
 
If the transfer were noncoplanar (β≠0) the components thrust equations would be:  
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Our algebraic approach  for the semi-major axis deviations is done through the rate variation of the 
satellite mechanic energy, which is equal the integral of the potencies changed with results forces 
components in the transversal and radial directions. The kinematics energy variations are: 
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Add these equations we obtain the variation of the satellite mechanic energy, Em, without "pitch" 
error, 
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with, 
 
a(ti) the semi-major axis of the satellite orbit of the instant i. 
 
The equation (15) for one transfer under "pitch" error, ∆α(t) is, 
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Taking the difference between the both equations, (15) and (16), we obtain, 
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If we use the fact that the semi-major axis of the departure and arrive orbits in the initial instant are 
equal and doing after some algebraic manipulation, taking it the expectation or first moment, E, of the 
final equation, we have, 
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Now, we consider the stochastic process are ergotic. So, the expectation operator (mean inside the 
ensemble) commutes with the integral operator (in the time). Besides this, the function F and the 
trigonometric functions are deterministic in the time. Therefore, we evaluate the mean through the 
ensemble for the equation (18),  
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The expression (19) is general for any probability distribution function to ∆α(t) and for any kind of 
noise, that is, "white-noise", "pink-noise" or other. But, we must define if the variables inside the 
integral in (19) are correlated or not correlate to evaluate the expectation. 
 
Case ∆α(t) Not Correlated with Transversal and Radial Velocities, Uniform and Gaussian 
 
In this case (white-noise), we decompose the expectation operator as one product of the individual 
expectations for the trigonometric functions of the  ∆α(t) and the velocities components, because they 
are not correlated.  For the ∆α(t) with uniform distribution inside the interval [-∆αmáx, ∆αmáx], we 
have, 
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We consider that the velocities effects inside the interval [-∆αmáx, ∆αmáx] in the same time are, 
practically, balanced, because the deviations occur between values maxima and minima inside them. 
That is, the velocities with errors and without them are very close values. So, 
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The equation (19) with this results is, 
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In other hand, we have, 
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with, 
 
      ∆a(t2) = a’(t2) – a(t)                                                                                                                   (27) 
 
If we expand the expression (26) in turn of the rate ∆a(t2)/a(t2),  
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We can compare the both equations, (28) and (25),  
 
 

      1

1
)1( +

∞

=
∑ − n

n )(
1

2
1 ta n+ .E { )( 2tan∆ } = K1 .









−
∆
∆

1
]sen[

máx

máx

α
α

= 

 

      K1.






 +∆−∆+∆− ....

!7
1.

!5
1.

!3
1 642

máxmáxmáx ααα  or 

 

      1

1
)1( +

∞

=
∑ − n

n )(
1

2
1 ta n+ .E{ )( 2tan∆ }= K1. máx

nn

n n
α.2

1

.
)!1.2(

1.)1( ∆
+

−∑
∞

=

                                              (29) 

 
with,  
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Q1 and Q2 are quadratures. 
 
The equation (29) describes one sequence of the even power terms for the maximum deviation in 
"pitch" with respect the expected values of the semi-major axis. For n=1, we have, 
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with, 
 
      K2 = K1.a2(t2)                                                                                                                            (32) 
 
This result shows that for the first order the cause/effect relationship is one parabolic fitting. But, the 
general curve would be one composition of the all even power terms.  
 
The procedures for the  ∆α(t) with guassian distribution inside the interval [-∆αmáx, ∆αmáx] are the 
same of the uniform distribution. So, the  
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The form of the curve in (34) is similar that in (29). That is, there is one clear non-linear relationship 
between cause ( ασα .3=∆ máx ) and effects ( )( 2ta∆ ). For n=1, we have,  
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Case ∆α(t) Correlated with Transversal and Radial velocities, uniform and Gaussian 
 
In this case (pink-noise), we cannot decompose the expectation operator as one product of the 
individual expectations for the trigonometric functions of the  ∆α(t) and the velocities components, 
because now they are correlated. The procedures are the same done until this point, except, we must 
evaluate the expectation of the products of the different variables, without the decompose them. 
Besides this, we consider the ∆α(t) random-bias deviations, that is, ∆α(t) = constant = ∆α(t1)= ∆α. 
 
After mathematical manipulations we found the following equation, for the both cases, uniform and 
gaussian distribution, 
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(36) has one even product of the functions. The odd functions inside de product are not known, but we 
can modeled its product as one even function, for example, { }]cos[ α∆ . Other important approach in 
this way is to consider for the equation (2) that the expectation of the product is equal the product of 
the expectations of the functions, so that, 
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for the gaussian case, where the coefficients are 
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The Qij functions are quadratures. For n=1 we have, 
 
 E{ )( 2ta∆ }= λ1.a2(t2) - λ2.a2(t2). máxα2∆                                                                                         (47) 
 
for the uniform case and, 
 
E{ )( 2ta∆ }=  λ4.a2(t2) - λ5.a2(t2). 2

ασ                                                                                                (48) 
 
for the gaussian case. 
 
These results show once more the nonlinear relationship between cause and effect looked for. The 
terms λ1.a2(t2) and λ4.a2(t2) are constants and do not change the general form of  the curves. 
 
We can compare the both results of the deviations (uniform and gaussian) through the equation, 
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 230

If we replace this equation inside the (29), we obtain for the first order the results are the same, for the 

same ασ  and for others order, the gaussian semi-major axis deviations are ( )
!.6

!1.2
n

n
n
+  more than the     

uniform deviations, for the same ασ . 
 
 
THE JPS1 CURVES OF NONIMPULSIVE AND COPLANAR ORBITAL MANEUVERS. 
NUMERICAL RESULTS  
 
The numerical results confirm the algebraic results obtained. We simulated (Monte-Carlo) 1000 
ensembles of the transfer trajectories for the both kind of deviations (uniform -U, gaussian - G), for 
the both maneuvers ("theoretical" - T, "practical" - P), for the random bias (S) and white noise (O) 
deviations. Figures 1 and 2 show E{a(t2)} for cases TUS, TUO, TGS , TGO and PUS, PUO, PGS, 
PGO, respectively. In these figures DES2 = √3.σ∆α where σ∆α is the pitch angle standard deviation for 
zero mean.  
 

Fig. 1 – Mean Semi-major axis vs. DES2                Fig. 2 – Mean Semi-major axis vs. DES2 
 
CONCLUSIONS 
 
In the algebraic developments, we obtained expressions for E{∆a(t2)} as series of even powers of σ∆α 
dominated by the (σ∆α )2 term, to explain the near parabolic relations and others found in the 
numerical phase, independent of the: 1) transfer orbit (theoretical or practical); 2) ensemble 
distribution (uniform or gaussian); 3) time correlation/dependence (random-bias or white-noise); 4) 
the gaussian deviations are more than the uniform deviations with mean linear coefficient between 
them equal 2.6 (numerical result) in all cases. The algebraic results anticipated the value 3.These 
results suggest and partially characterizes the progressive deformation of the trajectory distribution 
along the propulsive arc (JPS curves), turning 3-sigma ellipsoids into banana shaped volumes curved 
to the center of attraction (we call them “bananoids”) due to the loss of optimality of the actual (with 
errors) trajectories with respect to the nominal (no errors) trajectory. Those results also characterize 
how close/far are Monte-Carlo analysis and covariance analysis for those examples. 
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