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ABSTRACT 
 
The space environment imposes hard constraints in the design and control of robots because the 
dynamic behavior of the robot is quite different from its on-ground behavior. The modeling task 
becomes very complicated (or almost impossible) if one wants to take into account all the 
environmental conditions, which are present in the real environment. Therefore, in-flight dynamics 
data are required, with primary goals to update and validate mathematical models and gain confidence 
in the modeling process. Thus, the identification process is a very suitable choice to obtain a model 
with a high degree of fidelity. The failure detection task is very important in any engineering system. 
In space experiments, the knowledge of the sensor is almost crucial, because (normally) these 
experiments are very expensive. The loss of a sensor shall not jeopardize the whole experiment. In 
this paper, the robotic joint modeling and a integrated parameters identification – failure detection 
strategy is presented. The modeling process is carried out by using the Newtonian approach and the 
on-line identification is based in a modified version of RLS (Recursive Least Squares) algorithm. The 
analytical sensor failure detection uses the MOESP (Multi Output State Space Identification) 
algorithm as a baseline for the failure detection strategy. The developed strategy has been tested by 
using the real measurements taken from IRJ (Intelligent Robotic Joint) Experiment built at DLR 
Oberpfaffenhofen. Several tests have been performed which represent the situation where a single 
(and multiple) sensor failure is simulated and presented. In the tests, the integrated strategy has proved 
its desired performance, and it presented remarkable results in both: failure detection and on-line 
parameters identification.  
Keywords: identification, modeling, failure detection, space robotics. 
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SYMBOLS 

 
A = Matrix which represents the dynamics in the state 

space model 
B = Matrix representing the actuator location in the 

state space model 
C = Matrix representing the sensors location in the 

state space model 
D = Matrix 
J = Moment of inertia (Kg. m2) 
T = Torque (N. m) 
Td = Damping torque (N. m) 
Tg = Gravity torque (N. m) 
Km = Motor constant ( N. m/A) 
N = Gear reduction 
x = State vector 
y = Output vector 
vaf = Variance accounted for 
Var = Variance 
E = Expected value 
L = Estimator gain 
P = Estimator covariance matrix 

Greek Symbols 
θ∆  = Relative position (input position – output 

position) 

θ&∆    = Relative velocity (input velocity – output 
velocity) 
δ       = Lower bound for errors 
ε       = Relative error between estimation     and 

measurements 
λ  = Estimator forgetting factor 
ϕ  = Measurement matrix 
θ  = Angular position (rad) 
θ&   = Angular velocity (rad/s) 
θ&&   = Angular acceleration (rad/s2) 
Θ   = Parameters vector

Subscripts 
in relative to input side (motor side) 
out relative to output side (link side of the joint 
wg relative to wave generator of Harmonic Drive gear 
fs relative to Flexspline of Harmonic Drive gear 
load relative to the load attached to the joint 
stiff  relative to stiffness 

 

 
INTRODUCTION 

 
The failure detection (and isolation) in sensors and actuators is extremely relevant in systems 
engineering. Much effort in developing algorithms and strategies that efficiently detect and isolate 
failure in sensors has already been done (Basseville, 1997). Normally, two theories are applied: one 
using equipment redundancy and another using analytical redundancy. The equipment redundancy 
theory uses the information from two or more sensors to declare a failure of another one. The main 
characteristics of this theory are low computer effort and simple algorithms. These features result in 
heavy systems and are also more expensive (it is necessary to use redundant equipment). These 
characteristics sometimes make the failure detection process based on redundancy almost unfeasible. 
On the other hand, the failure detection based on analytical redundancy is attractive due to low costs 
(financial) and also from the design point of view.  
 
Normally, these techniques are very complex and demand high computational efforts. Different 
methods have been applied to analytically detect and isolate sensor failure (Leohardt and Ayoulvi, 
1997). The majority of these methods employ filtering techniques, Kalman filter for instance (Keller, 
1999). The main problem to use these methods is the complexity and consequently, the high 
computational load. The heavy computational load appears because, normally, it is necessary to 
compute a bank of filters, which increase proportionally to the number of sensor to be monitored. In 
this paper, it is not intended to develop complex algorithms or sophisticated techniques, since the 
failure detection mechanism shall work in parallel with the parameters identification algorithm. Thus, 
the goal is to elaborate an algorithm that monitors the sensors output and also gives an alternative 
solution in case of failure. The technique presented further uses the subspace identification approach 
to derive the state space matrices, which are used in the failure detection algorithm. 
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The work is divided into three parts: the first part shows the mathematical representation of the IRJ 
experiment, the second shows the algorithm for failure detection and finally some results are 
presented. 

 MATHEMATICAL MODELING 
 
The dynamics of the IRJ experiment can be represented by (Silva and Schäfer, 2001): 
 

wgindminin TTTJ −−= _θ&&           (1) 

loadfscsdoutdfsoutout TTTTJ +−−= __θ&&         (2) 
 
Regarding the several torques acting on the joint, Eq. (1) and (2) are rewritten as 
 

[ ] ),()()(  __ ininindwgdstiffaminin TTTIKJ θθθθθ &&&& −∆+∆−=       (3) 

[ ] outgoutoutfscsdoutoutoutdwgdstiffoutout TTTTTNJ θθθθθθθθ sinˆ),(),()()( ___ +−−∆+∆⋅= &&&&&    (4) 
 
The complete friction modeling and friction model can be found in (Silva, 2001). 
Equations (3) and (4) are used as identification model. These two equations can be written a in 
regression form, which is useful to apply the RLS method: 
 

Θφy )()( tt T=             (5) 
 
where the damping and stiffness coefficients (grouped in vector Θ ) are to be identified. 
 

OUTPUT SENSORS ESTIMATION 
 
The goal of the state space identification is to derive the set of state space matrices, which represent 
the relationship between input and output measurements (Silva, 2001): 
 

)()(      )(
)()()1(

kukxk
kukxk

DCy
BAx

+=
+=+           (6) 

 
where )(kx  are the states  
       )(ku are the inputs, namely, motormotor θθ &,  and motorθ&&  
       )(ky are the output: outθ  and outθ&  
       CB,A,  and D  are the unknown state space matrices to be determined. 
 
Several methods (Juang and Pappa, 1985; Verhaegen and Dewilde, 1992, 1993) called Subspace 
Methods Identification (SMI) methods can be used to identify the unknown set of matrices. The 
algorithm MOESP has been selected due to its versatility and reliability and besides, this algorithm 
has already been successfully tested by DLR in the identification process of a helicopter using real 
data (Verhaegen et al, 1994). 
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STATE SPACE IDENTIFICATION ACCURACY CHECK 
 
The state space matrices have been obtained by using all set of measurements available, namely, a set 
of 12 trajectories have been used. This procedure tries to ensure that the obtained set of matrices are 
able to deliver a satisfactory estimation even in the case when a different trajectory is used. 
The estimation accuracy has been verified in a statistical way by using as an indicator the vaf 
(variance accounted for) that is represented by 
 

%100*
)var(

)ˆvar(1 






 −
−=

y
yyvaf          (7) 

 
where 

})]({[)var( 2xExEx −=  
is the x variance. It is noted that when the value of vaf is high (close to 100), the better the estimation 
quality is. In case of the zero error, the vaf is 100 %. 
 

FAILURE DETECTION ALGORITHM 
 
Using the MOESP algorithm, it is possible to obtain a set of matrices that will estimate the states with 
a known degree of accuracy given the output of some sensors. For the case studied, the output of link 
position and velocity sensors are estimated given the information of input side (motor side). 
It is important to note that the matrices given by Eq. (6) are obtained before any failure occurs, thus 
they are able to estimate all states with known statistical property. 
 
The measurements to be monitored, outθ and outθ& , are written in vector form (Silva, 2001) 
 

[ ]outoutt θθ &=)(y            (8) 
 
The relative percental error between measurement and estimation is given by  
 

% 100
)(ˆ

)()(ˆ
)( ∗







 −
=

ty
tytyteε           (9) 

 
for min)(ˆ δ≥ty . Where minδ  is the lower bound in the plant output. 
When )(teε  is bigger than a specified value given by  
 

)(100
max

vafee −+= δε           (10) 
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where vaf is given by Eq. (7) and eδ  is an estimation tolerance factor, and when a significant variation 
( )(tioε ) between motor sensor and link sensor occurs   
 








 −
=

)(
)()(

)(
ty

tyty
t

in

outin
ioε , min)( δ≥tyin          (11) 

a failure in the respective sensor will be declared. After this instant, the sensor output is replaced by 
the estimation obtained from MOESP algorithm. If )(teε  has increased, but )(tioε  lies in the 
acceptable range, a sensor failure cannot be declared. This means that the state space matrices are no 
longer valid. This situation can occur in cases where the system is experiencing large environmental 
changes, big temperature variations for instance. In this case, the nominal set of matrices shall be 
recalculated. This task is easily done by using the MOESP algorithm. 
 

PHYSICAL PARAMETERS IDENTIFICATION 
 
The recursive identification process is based on a modified version of RLS (Silva, 2001), which main 
steps are: 
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where the forgetting factor ( λ ) is appropriately updated in order to improve the algorithm tracking.  
 

ALGORITHMS TESTS AND RESULTS 
 
Since all the necessary mathematical modeling has been derived, the next step is to verify the 
performance of the integrated process: failure detection and on-line identification. First, the ability of 
the failure detection strategy is verified by simulating a position sensor failure. After, the on-line 
identification is performed by using the outputs of the failure detection algorithm. If some 
measurements are declared failed, the correspondent sensor output is replaced by the MOESP 
estimation. It is important to note that the proposed strategy allows the identification algorithm to 
continue work and identifying the parameter related to failed sensor with a reasonable accuracy. The 
identification model used in the recursive identification is given by Eqs. (3) and (4). The main idea of 
the integrated process is represented in Fig. (1). 
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Figure 1 – FDI and Identification 

 
STATE SPACE ESTIMATION ANALYSIS 

 
The state space matrices have been estimated by using a set of 12 different trajectories. The data 
incorporate triangular trajectories as well as sinusoidal ones. In accordance with Eq. (6), the system to 
be identified is a MIMO one with three ( motormotor θθ &,  and motorθ&& ) inputs and two outputs ( outθ  and 

outθ& ): 
 

)()(      )(
)()()1(

kukxk
kukxk

nn

nn
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          (13) 

 
The numerical values of the identified matrices are 
 









=

1.0041     0.0756   
 0.3232-   0.9550   

nA , 







=

0.4048      1.8935-   0.0023-
0.1894-   0.9562-   0.0277-

nB  









=

0.4464-   0.3263-
0.0088-   0.0058  

nC ,   







=

0.9836-   5.3887    0.0068  
0.0323     0.7962    0.0003-

nD  

 
where the index n means that the matrices have been obtained by using all type of trajectory available, 
thus corresponding to the nominal model. In order to illustrate the identification process, the inputs 
and outputs of MOESP algorithm are shown in Figs 2 and 3. 
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Figure 2 Inputs for MOESP algorithm - 
Triangular trajectory ( motorθ& = 25 rad/s) 

 
 

 
Figure 3 Output measurements and respective 

estimate 
 

Figure 3 shows the outθ , outθ&  measured and its respective estimate outθ̂  and outθ&̂ . In this figure, the two 
lines are almost indistinguishable, which shows the excellent result of the estimation process. This is 
confirmed by the vaf indicator  
 

% 100=posvaf ,                         % 99.9898=velvaf        (14) 
where vafpos is related to the position and vafvel is related to the angular velocity. 
 

FAILURE SIMULATION 
 
The failure detection mechanism described above has been tested by simulating different cases and 
situations. The cases differ due to the trajectories used and the situations due to the instant of failure: 
simultaneously or not. 
 
Figure 4 shows the simulation of position sensor failure by using a triangular trajectory. The sensor 
has presented a failure at instant t= 5s, but the velocity sensor did not present a failure. The failure is 
simulated by replacing the real data by a random noise. It can be noted that the algorithm 
instantaneously detects the bad measurements delivered by the position sensor and replaces it by the 
corresponding estimation (Fig. 5). Because of the good accuracy, it is almost impossible to note the 
transition from real data to estimated one only by inspecting the plots. 
The failure in the velocity sensor is detected in the same manner, namely, when the algorithm detects 
a variation in )(teε , a failure is declared. The measurement is replaced by the estimation and an 
estimated signal is available for the parameters identification algorithm. 
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Figure 4 Sensor position failure 

 

 

 
Figure 5 Link position after measurement 

reconfiguration 
 

ALTERNATIVES UNDER FAILURES SITUATIONS 
 
The identification techniques require not only a minimal number of measurements but also that these 
measurements are of good quality. In specific cases the IRJ experiment, may operate also in space 
environment. This fact shows that a special attention to the sensors and actuators shall be dispensed. 
Thus, several strategies and alternatives have been developed in order to investigate the special 
requirement for this task. An important detail to be considered is related to failure in sensors. Thus, 
aiming to maximize the available experiment information in case of failure occurrence, two solutions 
were found: 
 

• Algorithm reconfiguration; 
• Stiffness isolation. 
 

It is important to note that the solutions proposed always try to maintain the low computer effort and 
also to keep the algorithm reconfiguration ability. The first requirement is needed because there exists 
the possibility to have on-board processing; normally the on-board computer has limited 
characteristics if compared to computers used on ground. The second requirement is needed because 
there is a high possibility of the system present time variant behavior. Therefore, the main 
requirements for the algorithm and strategy developed are: adaptation capability, reconfiguration and 
low computer effort. 
 

SENSORS FAILURE SIMULATION 
 
In the following, the parameters obtained by using identification algorithm under link velocity sensor 
failure (simulated) are presented. In the detection, isolation and estimation process, the procedure 
described above has been used. The model used is described by Eqs. (3) and (4), namely, the model 
incorporates the non-linear terms and cyclic errors. 
The failure in the link velocity sensor is programmed to occur at t = 20s, and the corresponding 
measurement signal has been replaced by random noise (0,0.1). From this instant, the information 
given by this sensor is replaced by the MOESP estimation. 
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The behavior of the identification process by using MOESP estimation is shown in Fig. 6. It is 
observed that the accuracy given by the vaf indicator is confirmed. No oscillations have been observed 
after replacing the measured data by the estimated ones. The dashed lines in Figs. 6-9 represent the 
values obtained by the off-line identification using only measured data. It can be noted that the 
identification algorithm converges to the expected value using estimated state. This ensures that 
mission success is guaranteed even in the case of link velocity sensor failure. In Fig. 7 the stiffness 
and damping parameters are also shown. It can be noted that all parameters are very close to those 
obtained by off-line identification, showing that the estimation given by MOESP algorithm has no big 
effect in the global identification process. 
 
In Fig. 8 and 9 the identification results are shown in the case where the MOESP estimation has been 
used. Considering the severe requirements (measurements of magnitude 10-9) for stiffness parameters, 
one can conclude that the results are excellent. The parameters present small changes in comparison 
with the values obtained by off-line estimation using only measured data. The variations in the 
parameters range from 0.5 % (additional spring) to 10.5 % (term related to the Stribeck effect (Olsson, 
1996) ). The variation in 1

2
−ϖNT  is justified by the high sensitivity of this term (This has been 

observed in the singular value analysis). Once, the identification process is reconfigured, and 
considering that the estimation is very good, there exists still a difference between measured and 
estimated ones. This difference is naturally reflected more sensitively in the parameters. 
 
 

 
Figure 6 Viscous damping identification (link) 

by using MOESP estimation 

 
Figure 7 Linear parameters – Using link velocity 
given by MOESP algorithm. 
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Figure 8 Linear parameters – Using link 
position estimated by MOESP algorithm 

 
Figure 9 Damping coefficients– Using link 
position estimated by MOESP algorithm 

 
CONCLUSIONS 

 
In this work, an algorithm for both failure detection and parameters identification has been developed. 
The developed algorithms have been applied and tested to identify dynamic parameters of IRJ 
experiment. The failure detection and isolation procedure has presented very low computer effort 
compared to the conventional procedures. 
 
The integrated process (identification and failure isolation) shows efficiency in the failure detection 
and isolation of the data under failure suspect. Due to critical conditions of dynamic identification of 
stiffness coefficients, it can be concluded that the results obtained in the identification process by 
using MOESP estimates are remarkable, allowing immediately applications, such as adaptive control 
design. 
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