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Space robots and space teleoperators also called 
telerobots are currently being developed in the 
USA, Europe, Canada, Russia and Japan for use in 
the International Space Station (ISS) and in 
planetary and lunar scientific missions. The robot 
applications in space missions became very 
attractive for several reasons. 

First of all robot could develop activities that are 

dangerous and risky for the humans. In addition the 

use of astronauts for space operations is too costly 

and involves significant safety risk. The space 

environment is not natural for humans. Any human 

activity in space requires designing and testing 

devices to provide oxygen in space, to provide 

protection against large temperature variation as 

well as to provide protection against the space 

environment pressure and radiation. Also the 

astronauts must be trained to work in the g-zero or 

micro gravity environment. Even tasks such as to 

work while using a space suit require many ours of 

training. The dressing of a space suit that for many 

look like a simple task requires hours of work and a 

second person to help. The robot can replace the 

man’s work in various situations in space. The 

combination of the human and the robotics work 

(telerobotics) saves time and reduce the risk of life 

for humans in space operations. A space robot may 

be an entire spacecraft or a subsystem of a space 

vehicle, as for instance the shuttle manipulator 

robot system (SRMS). The Sputnik, the first 

artificial satellite launched by the former URSS can 

be considered as a space robot with the mission of 

sending radio signal to Earth. Automated orbiters 

and lenders have explored the Moon, Mars and 

Venus. Presently space robots are on the Mars 

Roll  
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Figure 1  In-Orbit Station Physical Model  
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surface collecting and analyzing rock samples and 

looking for evidence of water and possible life in 

the red planet. Examples of automated spacecraft 

like robots are Mariner, Magellan, Surveyor, 

Viking, and Veneras. The advent of the large space 

systems as the space shuttle, space stations, and the 

power satellite concept gave birth to the space 

robot manipulator systems design. The design of 

these manipulators would require taking into 

account new aspects of the dynamics never 

considered before for the robot manipulators, such 

as the operation in the micro gravity environment 

and the manipulator operation on a mobile (non-

inertial) base that always react (based on the action 

and reaction Newton’s law) to the manipulator 

work of grasping and moving  payloads along the 

mother spacecraft.  The space shuttle started a new 

era in space transportation with its reusability and 

new features of operation in space. Such operations 

require the usage of robot manipulators to grasp a 

spacecraft while it is being repaired in orbit, as it 

was the case of the successful refurbishment of the 

Hubble Space Telescope in 1993. The SRMS, or 

Canadarm, flew for the first time on-board the 

Space Shuttle Orbiter, Columbia, in 1981. That was 

the second Shuttle transportation mission[1]. It took 

nearly seven years for Canada to build the robotic 

manipulator for the Shuttle transportation missions. 

Since that time, the SRMS has been used 

extensively for payload deployment and retrieval. 

A new generation of space manipulators is planned 

to operate on-board the International Space Station 

(ISS), providing services of payload transportation 

and maneuvering as well as Shuttle berthing and 

deberthing, etc. Another teleoperation remote 

manipulator system is the special dexterous 

manipulator, to provide the ISS with more delicate 

and dexterous assembly tasks. These robotic 

manipulators are part of the mobile servicing 

system of the ISS. The Japanese Experiment 

Module is also a manipulator system built by 

Japan, a partner in the development of the ISS. 

From 1981 to 1992 28 SRMS different missions 

have been accomplished[2].  

The on-orbit teleoperation involves robots 

manipulating masses that are not negligible as 

compared with the mass of the mother satellite, or 

Shuttle. These on-orbit operations present various 

and difficulties and challenges[3]. Among those 

difficulties, presented in reference 3, we can 

include robot path planning, interaction between 

robot motion and vehicle attitude dynamics and 

control, and the flexibility of the SRMS.  The first 

difficulty (the robot path planning) differs from the 

problem for Earth-based manipulators. On the 

Earth-based manipulators the designer considers 

the robot mounted on an inertial fixed base. In 

space the robot is mounted on a mobile base. The 

mother space vehicle can move as a result of 

Newton’s action and reaction law when the SRMS 

operates. Reference 3 illustrates these difficulties 

with the following example: consider the SRMS 

mounted on a Shuttle of mass 67,000 Kg that can 

manipulate a maximum payload of 30,000 Kg. By 

commanding the robot to move this load through a 

distance of 6 m, would cause the Shuttle to have a 

relative motion of about 1.8 m (considering both as 

point masses, for simplicity). The result is an actual 

motion of only 4.2 m. The robot would miss its 

target by 1.8 meters. Let us consider now the time 

the astronauts consume when they have to operate 

the SRMS. Approximately one-third of the time 

that they spend to operate the SRMS is consumed 

by waiting for vibrations to decay to a required 2-in 

level before grasping one object. This means that 

for every 6 hours of operation of the SRMS during 

a space flight, the astronauts spend 2 hours waiting 

for vibrations to decay. The problem of flexibility 

may become more complicated if we consider that 

the mother vehicle is a large space structure that 

Fig. 2 – jth  Finite Elements, Left and Right Side of the Main Bus 
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also experiences flexible vibrations, in addition to 

the structural RMS flexibility. We should point out 

that the manipulator structural flexibility 

assumption is not a simply theoretical idea. 

Actually the weight saving is critical for space 

missions. Because of the expense of launching 

mass into space, the RMS exhibits significant 

structural flexibility. Another fact that contributes 

to this is the size of the manipulator arms. Large 

workspace requirements require that some of the 

manipulators be long and thin. New material and 

special shape designs try to overcome the elasticity 

problem. However, so far, we cannot avoid having 

structural flexibility in designing long manipulator 

arms, such as those built for the space Shuttle and 

ISS missions. The MRS structural vibration 

interacts with the attitude control systems.  In this 

paper we analyze this attitude and vibration 

problem a large space structure containing an 

RMS. In the next section, we present the physical 

and mathematical model of this space station as 

well as its control law formulation. 

 

 

Mathematical Modeling 

 

The mathematical model is obtained by 

combining the Finite Element Method (FEM) with 

the Lagrangian formulation, for generalized and for 

quasi-coordinates[4],[5] . Then the equations of 

motion are linearized about the gravity-gradient 

stabilized nominal local vertical orientation. The 

linearization procedures follow Kaplan[6], except 

for the fact that our model is flexible and includes 

the RMS. The physical model of the space station 

consists of a long tubular beam (representing the 

main bus), two tubular beams connected to the 

main bus and to each other by joints (representing 

the RMS) and two long solar panels, approximated 

by thin plates, clamped on the base of the main bus. 

Figs. 1 and 2 illustrates the physical model.  

In order to apply the FEM technique to model 

the space station, consider Fig. 2, which shows the 

finite element definition and the vector position of 

an elemental mass in the finite elements, at the 

right and the left side of the main bus. We have 

eliminated any structural rigid body translation. In 

this case, the system center of mass is constrained 

to follow the (assumed) circular orbit path and the 

orbital rate is constant. Observe that these 

modeling assumptions make the free-free space 

structure different from the Earth based free-free 

beam model. In spite of the fact that the station is a 

free-free structure in space, its rigid body motion is 

restricted to the attitude degrees-of-freedom 

(rotational motion about its center of mass). We 

have used the MATLAB Symbolic Math Toolbox 

and its associated FORTRAN representation of 

symbolic expressions, to obtain the mathematical 

model and its mathematical expressions in 

FORTRAN code, respectively. Then the coded part 

of the model was inserted into the computer 

routines that we have built to implement the 

numerical simulations. 

The main steps in using the Lagrangian 

Formulation in conjunction with Finite Elements to 

obtain the mathematical model for the station are: 

• Derive the mass matrix for the finite 

element j of each component of the station 

system 

• Derive the stiffness matrix for the finite 

element j of each component of the station 

system 

• Assemble the mass and the stiffness 

matrices for the complete system 

• Write the Lagrangian function given by T-

V, where T and V stands for kinetic and 

potential energy, respectively 

• Derive the (external) torques associated 

with the gravity-gradient 

• Use Lagrange’s formula for quasi-

coordinates and for generalized 

coordinates to obtain the equations of 

motion.  

Consider now the element of mass j, Fig. 2, of 

the main bus. The position of an elemental mass of 

the element in the deformed configuration can be 

written as 
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for the right and the left hand side of the main 

bus, respectively. The shape functions can be 

written in matrix form  

 

[ ]{ }qΦ=)t,x(z kk    
     

     (3)

  

For beam elements we can chose this matrix to 

be 
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The derivative of {R} with respect to time, t, can 

be written in matrix form as 

{ } [ ] { } [ ]{ }qDRR && += ωT~
 (6) 
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By using these definitions, we can write the 

kinetic energy for the element j of the main bus as: 
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where the matrices [Jj], [mj], and [Ej] result from 

the integrals over the mass domain. Similar 

procedure is done to obtain the kinetic and elastic 

potential energy, respectively, for the two 

connected tubes of the robotic manipulator and the 

thin plates of the solar arrays (See Fig. 3) . The 

modeling of the solar arrays differs only for the 

rectangular thin plate elements and the shape 

functions (instead of the beam shape functions, 

given by Eq.(4)). So, by doing the same for each 

part of the space station we can obtain the kinetic 

energy for the manipulator and the solar arrays. 

Then, by using the FEM, we assemble the matrices 

associated with the finite elements of each part of 

the space station to obtain the total system kinetic 
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energy, T.  

 

We can obtain the elastic potential energy, U,  by 

the same approach. This energy can be written as 
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where {e} is the vector of the generalized 

coordinates including the rigid body DOF of the 

manipulator, θ1, θ2, and ζ (translational DOF). [ ]K  

is the structural stiffness matrix. The gravitational 

potential energy, Vg, can be written as 
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where the    ,, 2
yR

2
xRo o

ll and  2
ozRl are the 

direction cosines that relate the attitude angles with 

the orbital reference system of axes. oR  refers to 

the vector position of the center of mass of the 

station with respect to the center of the Earth ( see 

Fig. 4 for illustration). It should be pointed out here 

that we have neglected all the elastic displacement 

contributions to the gravity-gradient. It is a 

reasonable assumption since the gravity-gradient is 

of the magnitude of a position in the station to the 

radius R1.  This is to say that the gravity-gradient is 

small. The elastic displacement is completely 

negligible since it is a small value contributing to a 

yet small value. The expression for the 

gravitational potential energy does not have to 

enter into the Lagrangian function. Instead we can 

derive the gravitational torque by using Eq.(12) so 

that the torque is computed as an external torque 

associated with the Euler rotational equations of 

motion. Note that the Lagrangian function 

  

UTL −=   (13) 

 

is a function of the generalized coordinates and 

velocities, ii ee & , , and the rotational angular 
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velocities ,, yx ωω and zω .  The angular velocities 

are implicit functions of the Euler angles and rates. 

They cannot be integrated to obtain the 

corresponding coordinates. In other words 

,, yx ωω and zω are not generalized velocities 

obtained from the time derivative of the 

generalized coordinates. To use the Lagrangian 

formulation to obtain the Euler Equations we use 

the Lagrangian formula for quasi-coordinates given 

by 
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where Mo is the external torque vector, 

associated with the gravity-gradient torque and fo is 

the control torque vector. Mo can be obtained 

through the expression of the gravitational potential 

energy, Vg. Eq.(14) yields the Euler modified 

equations of motion accounting for the contribution 

of elastic acceleration and the accelerations 

associated with the robot dynamics. By combining 

the use of the Eq.(14) and the Lagrangian formula 

for generalized coordinates, 
ie
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we obtain the complete set of equations of motion 

for the space station as: 
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The control problem formulation requires the 

development of the state matrix or plant matrix. In 

order to obtain this matrix let us define the state 

vector as 
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where 
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The last term of Eq.(16) can be rearranged to 

write the state equation in the classical form: 

 

{ } [ ]{ } [ ]{ }uBxAx +=&  (17) 
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Now that we have written the state equation, we 

can consider the optimal regulator problem: Given 

Eq,(17),    we need to determine the gain  matrix 

[F] for the optimal control vector 

 

{ } [ ]{ }xFu −=   (18) 

so as to minimize the performance index 
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0

TT
c ∫

∞
+=
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where [B] is the input matrix, [Q] is a positive-

definite or positive semi-definite matrix, and [R] is 

a positive-definite matrix. In this formulation we 

consider that the state is completely observable and 

accesssible so that the feedback control can be 

accomplished without estimation. The optimum 

matrix [F] is given by 
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[ ] [ ] [ ] [ ]PBRF T1−=   (20) 

where [P] is the Riccati matrix . It is a symmetric 

positive definite matrix, obtained by solving the 

algebraic Riccati equation: 

 

[ ] [ ] [ ][ ] [ ] [ ][ ][ ] [ ] [ ] 0T1T =−++ − PBRBPQAPPA (21) 

 

By substituting Eq.(18) into Eq.(17) we obtain 

the state equation in terms of the state only, as  

 

{ } [ ] [ ][ ]( ){ }xFBAx     −=&  (22) 

 

The matrix [A]-[B][F] is called the closed-loop 

matrix. The damping factor associated with the 

control results from solving the eigenvalue problem  

of [A]-[B][F]. In the next section we implement the 

numerical simulations to analyze the space 

dynamics during the robotic manipulator operation. 

 

 

Simulations and Results 

 

We have used the MATLAB to implement the 

numerical applications for a structure with the 

following properties and parameters: 

 

Material density = 1769 Kg/m3 

Young’s Modulus = 7.3084e10 N/m2 

Main Bus length = 100 m 

Manipulator arms length = 10 m 

Solar panel dimensions = 10 x 10 x 0.003(m)  

Average Main Bus Diameter = 5 m 

Manipulator Arms Diameter=0.01m 

 

We have considered first the space station in its 

normal mode of operation, defined here as 
005.00 ±==== xzyx ψψψψ &  

We have assumed that all the elastic 

displacements are small (order of 10-3 m) in this 

configuration. We start then commanding the arm 

along the main bus, while the attitude control 

system (ACS) is turned off. The results are 

discussed by comparison with the nominal attitude 

that we have assumed. We show that, for any 

attitude change, the ACS can be turned on to 

recover the nominal attitude. We should clarify 

here that the command of the RMS is not done by 

the ACS. The LQR technique that we apply here is 

used to recover the attitude, to damp the structural 

vibration, and to take the RMS to zero position and 

rates. By setting appropriate initial conditions, we 

obtain the time history of the manipulator motion, 

via integration of the equations of motion of the 

open-loop system. To simulate the translation of 

the RMS base, while the control is on, the 

following strategy is used: we integrate 

simultaneously the open-loop and the closed-loop 

systems of equations. The output is compared 

graphically to show how the time history of both 

systems differs. Of course, the time history of the 

system with ACS on shows damping in the overall 

motion, including the RMS translation. However, 

the result reflects the time history of the system 

motion when the control is turned on. The main 

idea of this approach is to obtain the time history of 

the open-loop system and then compare the system 

configuration with the nominal specified settings in 

attitude and vibration. The result could serve as 

guidance for missions, which consider operating 

RMS with the ACS off. In this formulation, we 

show also that the control law, as we have designed 

here, can be turned on at any time, to bring the 

spacecraft to the normal mode of operation. 

We have implemented the numerical simulations 

considering two different cases: one in which the 

system is gravity-gradient stabilized and the active 

control is off; and the other in the same situation, 

with the active control turned on. It is well known 

that for the gravity-gradient stabilized case the 

system oscillates about the local vertical, if there is 

any misalignment with respect to the vertical. The 

active control is used to damp the misalignments 

and to maintain the spacecraft within the nominal 

attitude and rates. As we have a non-rigid system in 

the sense that we have a mobile RMS and that the 

space structure is flexible, our attitude control 

system is used to damp the elastic displacements as 

well as to control the RMS translational and 

rotational motions. We assume here that the 

operation with the control off should not last more 

than 1 minute. We show that, for the gravity-

gradient stabilized case, we can move the RMS 
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base during that time span without any problem. 

We show first that we have designed an effective 

control system capable of recovering the attitude 

from angles of about 5 degrees and initial elastic 

displacements of order of 10-2m, and which is also 

capable of maintaining the spacecraft within the 

nominal attitude. To accomplish this goal we have 

input the following values for the elements of the 

[Q] and [R] penalty matrices 

 

Q(i,i)=107, i = 1 to 132  

 

R(i,i)=107  

 

except for  

 

R(2,2)=R(3,3)=R(7,7)=R(8,8)=1.0   

 

The penalties above are associated with the roll 

and pitch attitude angles, and the elastic 

displacement at the left and right  hand side of the 

main bus, respectively. R(1,1) is associated with 

the yaw attitude angle. R(4,4) to R(6,6) are related 

to the rotation angles,  θ1 and θ2,  and the 

translation of the RMS base, ζ, on the space 

station, respectively.  R(9,9) to R(12,12) are 

associated with the control forces that actuate on 

the tip of  each arm of the manipulator and each tip 

of the solar arrays. Fig. 5 shows the components of 

the control vector, {u}, along the space station. 

The control effort necessary to control 

pitch and roll is much greater than the control effort 

necessary to control yaw. The reason is that the 

yaw axis is the axis of minimum moment of inertia 

while pitch and roll inertias are of the same order 

and much bigger. Note that the moment of inertia 

around the yaw axis involves the square of  the  

main bus radius (about 5 m) while the moment of 

inertia about the roll and pitch axes involves the 

square of half of the main bus length (about 50 m). 

Because of the great difference between the 

moments of inertia we avoid giving the same 

penalties for the control matrix elements associated 

with yaw, pitch and roll. By giving less penalty to 

yaw we avoid overdamping in that mode. A very 

high damping rate would increase the energy 

expenditure and consequently the cost. By 

balancing the penalties in the present work, we 

maintain the same order of transient decay rates in 

all three attitude angles and guarantee the damping 

of the elastic displacements. Fig. 6  shows the 

attitude (yaw, roll, and pitch) time history for the 

atitude control system, ACS, off. This picture 

illustrates the oscillatory nature of the gravity-

gradient stabilization when there are some 

misalignments.  Fig. 6 shows the case when the 

misaligment is about 50
 about all three axes. Fig. 7 

shows the results for the the simulation of the same 

configuration but  with   the  ACS on. In Figs. 8 -11 

we show the various results we have obtained for 1 

minute operation of the RMS, with and without the 

ACS actuation. We have assumed a small 

misalignment (0.050) in attitude and a low 

amplitude for elastic displacement of the main bus 

and the solar panel tips (order of 10-3m).  

 

u1 

u2 

u3 

u4 
u5 

u6 

u7 

u8 u9 

u10 
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Fig. 5 – Distribution of the Vector {u} Along the Space Station 
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Fig. 6–Attitude Time History, ACS Off 

Fig. 10 – RMS Tip Displacement, ACS On Fig. 7–Attitude Time History, ACS On 

Fig. 8–Attitude Time History, ACS On 
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All the results for this case show that the RMS 

base motion does not significantly disturb the 

attitude.  

 

 

Conclusion 

 

We have developed the model for a space station 

in low Earth orbit, for the gravity-gradient stabilized 

case, to analyze the attitude behavior during 

maneuvers with the RMS. We have formulated the 

active attitude control for the structure by using the 

LQR technique. The results show the attitude 

control damps the oscillations in attitude as well as 

the vibration. The results show also that for short 

duration of RMS maneuvers, the attitude does not 

change significantly.  
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