

INPE-11485-RPQ/779

COFI – CONFORMANCE AND FAULT INJECTION – A TESTING
PROCESS INCLUDING TEST AND FULT CASES DERIVATION

FOR SPACE APPLICATION SOFTWARE VALIDATION

Ana Maria Ambrosio
Eliane Martins*

Nandamudi Lanklapalli Vijaykumar
Solon Venâncio de Carvalho

* UNICAMP

INPE
São José dos Campos

2004

CoFI – Conformance and Fault Injection –
a testing process including test and fault cases derivation

for space application software validation

Ana Maria Ambrosio (INPE)

Dra. Eliane Martins (UNICAMP)

Nandamudi L. Vijaykumar (INPE)

Solon V. de Carvalho (INPE)

REPORT - INPE

October 2004

ABSTRACT

This research report describes a new testing process named CoFI (Conformance and
Fault Injection), which has been defined as part of the doctorate program in Applied
Computing. The CoFI integrates two existing testing approaches: conformance test and
fault injection technique. This process is focused on the validation of implementations
of the software services stated in the ECSS-E-70-41A standard. These services,
successfully adopted in many space missions, defines the application-level
communication between on-board and ground applications. The European Space
Agency has been setting standards for space mission software in the work of the
European Committee for Space Standardization (ECSS). The standards lead to cost
reduction of space mission software development for space agencies and industries over
the years. The CoFI is a conformance testing process founded on the IS-9646 standard
for ISO protocol, aimed to being applied for the ECSS-E-7041A standard services. The
advantage of this process is the generation of a re-usable abstract test suite which
improves the effectiveness of testing the services. Reliability and convergence in the
test and fault cases are increased the more the tests are being applied. A test cases and a
fault case in the abstract format are illustrated for the telecommand verification service
stated in the ECSS-E_4071A. Since conformance test is related to the certification
process, the subject on this report may be applied to space application certification
business.

COFI – CONFORMIDADE E INJEÇÃO DE FALHAS
UM PROCESSO DE TESTE INCLUINDO DERIVAÇÃO DE CASOS DE TESTE

E DE FALHAS PARA VALIDAÇÃO DE SOFTWARE DE APLICAÇÕES
ESPACIAIS

RESUMO

Este relatório de pesquisa descreve um novo processo de teste denominado CoFI
(Conformance and Fault Injection), o qual está sendo definido como parte do programa
de doutorado em Computação Aplicada. O CoFI integra duas abordagens de teste
existentes: teste de conformidade e técnica de injeção de falhas. Este processo tem como
objetivo principal a validação de implementações dos serviços de software
especificados no padrão ECSS-E-70-41A. Esses serviços, adotados com sucesso em
muitas missões espaciais, definem a comunicação, no nível das aplicações, entre
aplicativos de solo e aplicativos a bordo de satélites. A Agência Espacial Européia
(ESA) vem estabelecendo padrões para software de missões espaciais no trabalho do
Comitê Europeu para Padronização Espacial (ECSS). Os padrões proporcionam uma
redução de custos no desenvolvimento do software realizado pelas agências espaciais e
pela indústria ao longo dos anos. O CoFI é um processo de teste de conformidade
baseado no padrão IS-9646 para protocolos ISO, cujo objetivo é ser aplicado para
validação dos serviços padronizados pela ECSS-E-7041A. A vantagem desse processo é
a geração de um conjunto de testes abstratos, o qual melhora a eficácia dos testes. A
confiança nos casos de testes e casos de falhas e a convergência dos mesmos são
aumentadas conforme os casos vão sendo mais aplicados (re-usados). Um caso de teste
e um caso de falha na sua forma abstrata são ilustrados para o serviço verificação de
telecomando especificado em ECSS-E_4071A. Como teste de conformidade está
relacionado ao processo de certificação, o assunto abordado nesse relatório pode ser
aplicado em certificação de aplicações espaciais.

Palavras chaves: processo de teste, teste de conformidade, injeção de falhas por
software, validação de aplicações espaciais, serviços de comunicação solo-bordo.

SUMMARY

Pág.

LIST OF FIGURES9

LIST OF TABLES... 11

LIST OF ACROMNS AND ABBREVIATIONS...13

CHAPTER 1 INTRODUCTION ..15

CHAPTER 2 SPACE COMMUNICATION AND THE ROLE OF THE PACKET
UTILIZATION SERVICES ...19

CHAPTER 3 COFI: CONFORMANCE-AND-FAULT-INJECTION TESTING
PROCESS ...23

3.1 CONFORMANCE TESTING ..23

3.1.1 POSITIVE POINTS FOR USING THE ISO-9646 ..24

3.2 SOFTWARE-IMPLEMENTED FAULT-INJECTION TECHNIQUE24

3.2.1 POSITIVE POINTS FOR USING SWIFI..25

3.3 THE COFI ACTIVITY FLOW ..25

3.4 THE ACTIVITY DESCRIPTION..28

3.4.1 DEFINE TEST PURPOSE ...28

3.4.2 SPECIFY ABSTRACT TEST SUITE..29

3.4.3 SELECT AND PARAMETERIZE THE TEST CASES................................30

3.4.4 EXECUTE THE TEST CAMPAIGNS ..31

3.4.5 ANALYZE TEST RESULTS...31

3.4.6 GENERATE THE TEST REPORT..31

CHAPTER 4 APPROACH FOR STATE-BASED TEST AND FAULT CASES
GENERATION...33

CHAPTER 5 ABSTRACT TEST AND FAULT CASES FOR THE ECSS-E-70-41
SERVICES..37

5.1 TEST CASE:...39

5.2 FAULT CASE ..43

CHAPTER 6 RELATED WORK ...49

CHAPTER 7 CONCLUSION...51

REFERENCES53

APPENDIX A - OVERVIEW OF THE IS-9646 - CONFORMANCE TESTING
METHODOLOGY AND GFRAMEWORK..59

APPENDIX B - TEST PUPOSES FOR THE STANDARD PUS SERVICES67

APPENDIX C - THE EVENT/STATE MATRIX FOR THE TELECOMMAND
VERIFICATION SERVICE ..69

APPENDIX D - TEST CASES GENERATED BY THE CONDADO TOOL FOR THE
TELECOMMAND VERIFICATION SERVICE..73

LIST OF FIGURES

2.1 - Elements of a space mission ..19

2.2 - Telecommand system layers ..20

3.1 - CoFI Testing Process ...27

3.2 - Ferry-Injection Architecture ..30

5.1 - Points of Control and Observation for the telecommand verification service39

5.2 - Normal finite state diagram mapping the normal situations of the telecommand
verification service ...41

5.3 - Exceptional finite state diagram mapping the Exceptional Situations of the
telecommand verification service ..44

5.4 - Transition Tree of the mapping the Exceptional Situations of the telecommand
verification service...45

A.1 - Standardization Organization vs. Client vs. Testing laboratory60

A.2 – ISO conformance testing process ...61

A.3 – Local Test Method in Single-Party Context ..64

LIST OF TABLES

1.1 – Incident and causes in space missions ..16

3.1 – Concepts and acronyms ..28

5.1 – Capability Set of the telecommand verification service ..38

5.2 – Guard conditions for the telecommand verification service40

5.3 – Dynamic Behavior Description Test Case ..43

5.4 – Dynamic Behavior Description Fault Case ...47

A.1 – ISO Conformance testing concepts ..62

A.2 – Concepts related with testing methods ...65

C.1- Event/State Matrix for the telecommand verification service 70

LIST OF ACROMNS AND ABBREVIATIONS

ATS Abstract Test Suite

CCSDS Cooperation Committee for Space Data Standardization

CLCW Command Link Control Word

CLTU Command Link Transfer Unit

CORBA Common Object Request Broker Architecture

ECSS European Cooperation for Space Standardization

FIC Fault Injection Controller

FIM Fault Injection Module

FSM Finite State Machine

ICS Implementation Conformance Statement

IXIT Implementation extra Information for Testing

MSC Message Sequence Chart

OBDH On-Board Data Handling

PCO Point of Control and Observation

PETS Parameterized Executable Test Suite

PLUTO Procedure Language for User in Test and Operation

PUS Packet Utilization Service

SAMSTAG SDL and MSC based test case generation

SDL Specification Description Language

SLE Space Link Extension

SWIFI Software Implemented Fault Injection

TC Telecommand

TM Telemetry

UML Unified Modeling Language

UUT Unit Under Testing

15

CHAPTER 1

INTRODUCTION

The development of space application software is very expensive and one reason is that

their one-time application prevents cost reduction. These kinds of software need to be

reusable in order to make them more profitable for the space industry. In (Mazza., 2000)

it is pointed out that space software requires standardization by the fact that nowadays

more and more tasks are delegated to software. So, in order to avoid cost and schedule

overruns and to enable production of high-quality safe software, the European Space

Agency (ESA) together with industry have been setting standards for management,

quality assurance and engineering branches since 1993.

This set of standards defined by the European Cooperation for Space Standardization

(ECSS) may be found in (ECSS, 2003). In the engineering branch of the ECSS one may

find a recently defined standard, the ECSS-E-70-41A (ECSS_PUS, 2003) which

specifies services for the application-process communication between ground and on-

board systems. These services are referred to as Packet Utilization Services (PUS) and

they have already been used for the following space missions: X-Ray Multi-Mirror

(XMM), Meteosat Second Generation (MSG), International GammaRay Astrophysics

Laboratory (INTEGRAL), Automated Transfer Vehicle (ATV), ESA’s Project for On-

Board Autonomy satellite (PROBA), ROSETTA, MARS EXPRESS, CryoSat, Gravity

Field and Steady-State Ocean Circulation Explorer (GOCE), the Euro-Russian space

collaboration GALILEO Program for global satellite navigation, etc. (Merri, 1996),

(Merri, 2002).

Since the PUS services are publicly available as standards, it is essential to assure that

implementations (computer programs) of these services conforms to their corresponding

specifications. Moreover, it would be more cost-effective to establish a standard set of

previously defined test cases rather than defining test cases for each implementation in

isolation. The need of investments in space software validation is illustrated in the list of

16

problems with software testing and validation that caused loss of very important and

expensive space missions (Mazza, 2000). TABLE 1.1 summarizes these problems.

TABLE 1.1 - Incident and causes in space missions.

Project Incident Root Cause

ARIANE 501, June 1996 Launch failure, loss of 4
CLUSTER spacecraft

Lack of proper software and
system validation

Mars Climate Orbiter, Sept. 1998 Loss of Orbiter Confusion between imperial and
metric units. Lack of proper
software/system validation

Mars Polar Lander, Dec.1998 Loss of Lander SW error forced premature
shutdown of landing engine: lack
of proper software validation

Titan-4B, April 1999 Failure to put USAF Milstar
spacecraft into useful orbit

Centaur upper stage failed to
ignite. Decimal-point error in the
guidance system. Lack of proper
software validation

Delta-3, April 1999 Launch aborted Failure of on-board SW to ignite
main engine. Lack of proper
software validation

PAS-9, Arch 2000 Loss of ICO Global
Communication F-1 spacecraft

Error in a update to ground
software. Lack of proper software
validation

FONTE: Mazza, (2000).

In this report we present a testing process focussed on the validation of the PUS

services, named CoFI - conformance-and-fault-injection.

A testing process is a “course of action to be taken to perform testing”1. It consists of

several actions or activities since specifying the test cases, adjusting the test cases to the

test mean, executing the test, analyzing the results and producing reports about the test

execution. The CoFI covers all these test activities.

The CoFI is based in the IS-9646 standard, a conformance process for protocol

certification established by the International Standard Organization (ISO). Additionally,

it uses algorithms, from academic research, for space-based specification that have

produced good results about automatically specifying test cases from formal notation-

based specification, thereby significantly reducing time and effort with tests and

assuring a greater coverage of the specification. However, getting a formal

1 According to the process definition in IEEE Software Standards.

17

specification, acceptable for the formal algorithms, is hard and time-taking work,

requiring many iterations. Therefore, the specification should be complete, leading to

difficulty in getting it (Lai, 2002).

In order to avoid the problems of having a formal specification, in the CoFI process

normal and exceptional behavior are independently modeled from the service

description. Additionally, it extends the functional conformance (given in the IS-9646

protocol conformance testing standard) with the software implemented fault-injection

(SWIFI) to accelerate the rate of exceptional events.

The CoFI process comprises some characteristics that should be useful to support space

software validation/certification.

The structure of this report is as follows:

• Chapter 2- - Space Communication and the Role of the Packet Utilization

Services: presents the context in which the ECSS-E-7041A services standard is

used;

• Chapter 3 - CoFI: Conformance-and-Fault-Injection Testing Process: describes

the conformance-and-fault-injection testing process, its activities, the adopted

concepts and justifications;

• Chapter 4 - Approach for state-based test and fault cases generation: addresses

the approach for specifying abstract test and fault cases that comprises an

activity of the CoFI process;

• Chapter 5 - Abstract test and fault cases for the ECSS-E-70-41 Services:

illustrates the application of the approach for specifying abstract tests and fault

cases for the telecommand verification service given in the ECSS-E-7041A

standard;

• Chapter 6 - Related Work: discusses related works;

18

• Chapter 7 - Conclusion: presents conclusions and points out future works;

• Appendix A - Overview of the IS-9646: conformance testing methodology and

framework: summarizes the main concepts of the IS-9646 standard for ISO

protocol;

• Appendix B - Test purposes for the Standard PUS Services: lists the test

purposes defined for the PUS services;

• Appendix C – The Event/State Matrix for the Telecommand Verification

Service: shows the complete transition matrix specifying the expected behavior

of the telecommand verification service;

• Appendix D - Test Cases Generated By The Condado Tool for the Telecommand

Verification Service: lists the test case suite automatically generated by the

Condado tool for the normal behavior of the telecommand verification service.

19

CHAPTER 2

SPACE COMMUNICATION AND THE ROLE OF THE PACKET

UTILIZATION SERVICES

Communication between the ground and on-board systems is provided by many

subsystems (hardware and software) at several communication levels. FIGURE 2.1

shows the main elements of a space mission: satellite, ground station and satellite

control system. One overview of the satellite systems may be found in (Larson, 1992).

FIGURE 2.1- Elements of a space mission.

The ECSS-E-7041A specifies services to be provided by the satellite (service provider)

during its communication with the Satellite Control System (service client). The packet

utilization services (PUS) may also be applied in different software within a space

mission. For example, they may be applied to the embedded software of the On-board

Data Handling Computer (OBDH) as well as to the satellite simulator. The simulator

provides the same set of services in the module simulating the OBDH behavior, when it

is used to replace the real satellite during the Satellite Control System testing and

operator training.

The PUS services are characterized by a set of reports and requests transferred from/to

on-board application processes. For the requests and reports to be effective, ground and

on-board communication uses the layered CCSDS-defined Telecommand System

(CCSDS, 2000), (CCSDS, 2001a), (CCSDS, 2001b), shown in gray in FIGURE 2.2.

This system comprises 5 layers, from the Physical to the Packetization layers, providing

Satellite

Ground Station Sat Control System

TM

TC

Service Provider

Service Client

20

all the necessary controls to accurately deliver the telecommand (TC) packet that has

been generated on the ground to the on-board application process. The Telemetry (TM)

Packets deliver the service reports that have been generated on-board to the on-ground

application process. The Command Link Control Word (CLCW) and the Command

Link Transfer Unit (CLTU) are intermediary formats supporting the protocol

communication

Ground System Satellite System

TM Packet

CLTU

TC segment TC segment

TC transfer frame

TC Packet

Physical
layer

Coding layer

Transfer Layer

CLTU

TC transfer frame

Physical layer

Coding layer

Transfer Layer

Segmentation layer Segmentation layer

Packetization layer Packetization layer

TC Packet

Application
Process

Application
Process

TC Application Data TC Application Data

TM Packet

CLCW

CLCW

TM packet

Points of Control
Observation

FIGURE 2.2 - Telecommand system layers.

 SOURCE: ECSS-E-70-41 (2003, p. 29).

Although, space application software differ from ISO protocols, as they run under

adverse environmental conditions, they are only recently being specified as standards,

and many times they are uniquely implemented, the structure of the PUS services

(implemented into the application processes) over the leveled CCSDS protocols is

similar to the ISO-OSI basic reference model (ISO, 1994). So, the conformance testing

21

process defined in the IS-9646 standard seems suitable to the CoFI process, since points

of control and observation (PCOs) be established. The PCOs define the system

testability as they allow the tester to control and observe the occurrence of testing

events.

The application process that implements the PUS services and its commonest points of

control and observation are depicted in the Satellite System side in FIGURE 2.2. An

implementation of such an application process is the target of the testing process

presented in this report.

22

23

CHAPTER 3

COFI: CONFORMANCE-AND-FAULT-INJECTION TESTING PROCESS

The CoFI testing process integrates two existing approaches: conformance testing and

software-implemented fault injection (SWIFI) technique. This process is partially

supported by prototyped tools developed in previous research at the ATIFS project

(ATIFS, 2002), (Martins, 2003a). A summary of the work that has been carried out in

the ATIFS and that motivated us to define the CoFI process for space application

software may be find in (Ambrosio, 2004).

This chapter discusses conformance testing and SWIFI techniques, presents the CoFI

activities flow and describes the activities of the process.

3.1 Conformance Testing

The International Standard Organization (ISO) and the International

Telecommunication Union (ITU-T) have standardized procedures, for communication

protocols, with practical guides for conformance testing. These procedures, stated in the

IS-9646 standard for Conformance Testing Methodology and Framework (IS 9646,

1991), (Baumgarten, 1994), have allowed testing laboratories around the world to

perform testing and certification of ISO protocols.

In the IS-9646, the testing process comprises activities in which abstract test suites are

derived to certify a protocol implementation. The implementation to be tested is one or

more OSI protocols, in a single layer or in one or more OSI layers. A set of abstract test

cases is generated according to the protocol specification. Additional information about

Conformance testing consists of checking whether an Implementation Under Test (IUT)
satisfies all the specified conformance requirements. These requirements must be
explicitly mentioned in the standard, as they determine what should be tested.

The conformance requirements are checked by running a number of tests against the IUT
(these tests are referred as test cases).

24

the specific implementation is then added to the test cases only before the tests run. In

this way the abstract test suite may be re-used, thereby allowing test results to be

compared.

In short, the IS-9646 presents concepts and solutions for certification of protocol

implementations that may eventually be applied for certification of PUS service

implementations as well. Appendix A summarizes the IS-9646 standard contents.

3.1.1 Positive Points for Using the ISO-9646

The reasons for adopting the IS-9646 definitions in the CoFI process are the following.

Firstly, it incorporates a great deal of practical experience from test experts. IS-9646 has

been used by communication industries and by testing laboratories that perform

protocol testing of commercial implementations for approximately 20 years. Secondly,

some concepts of the IS-9646 have already been adopted in the validation of a Space

Link Extension (SLE) (CCSDS, 2002) service implementation. Validation of the SLE

implementation in the cross-supporting program carried out by ESA and Jet Propulsion

Laboratory (JPL) is presented in (Mertens, 2002). The TTCN2 and the commercially

available ITEX3 tool to edit and document the testing procedures were used for helping

the validation of the referred SLE implementation.

3.2 Software-Implemented Fault-Injection Technique

Space software applications require a high degree of reliability especially when running

on-board of a spacecraft. The software-implemented fault-injection technique (SWIFI)

has been widely used in the dependability validation process of critical systems (Voas,

1998). SWIFI has been adopted to accelerate the rate of fault events during testing,

2 In earlier versions, TTCN stands for Tree and Tabular Combined Notation. The new meaning is Testing
and Test Control Notation apt for TTCN-3.
3 ITEX Graphical Editor (Telelogic AB, Sweden)
http://www.telelogic.com/products/tau/ttcn/index.cfm
I supports test case specification in TTCN & ASN.1 and checks syntax and semantics of the test
suite.

http://www.telelogic.com/products/tau/ttcn/index.cfm

25

which enables software designers to identify and remove the faults of the

implementation under testing. For fault removal, external faults are submitted to verify

the system behavior under the presence of the faults, and to remove the uncovered

failures in the implementation and/or in the design. The SWIFI may also be used for

fault forecasting purposes, in which the faults are injected to rate the efficiency of the

operational behavior of the implemented fault tolerant mechanisms (Arlat, 1990).

3.2.1 Positive Points for Using SWIFI

The first reason to incorporate the software-implemented fault injection (SWIFI) in the

testing process was to accelerate the rate of problems in the unit under testing that

would be difficult (in time) to happen. Moreover, the SWIFI allows testers to reproduce

common faults encountered in the space context like memory and communication

faults. Another reason is to improve the evaluation of the system not only for

conformance but also for observation of its behavior under the presence of external

faults. Although, the likelihood of a particular fault (or the entire faultload) can not be

determined, and hence absolute conclusion about the software dependability cannot be

drawn, this technique represent a step towards safer software behavior. SWIFI has also

the advantage of being easily expandable for new classes of faults, and it is free of

physical interference. In (Madeira, 2002) an experimental evaluation of a COTS system

for space applications is presented. The fault injection was used to detected Single

Event Upsets (SEU), which are transient errors caused by space radiation. The SWIFI is

adopted to represent common space environment faults under which such kind of

systems are submitted when in its operational phase.

3.3 The CoFI activity flow

The CoFI testing process comprises six activities: define test purposes, specify abstract

test suite, select and parameterize test cases, execute test campaigns, analyze test results,

generate test report. presented bellow. These activities are organized into three phases:

• preparation for testing,

26

• test operations and,

• test report production.

The phases and activities have been chosen to comply with the IS-9646.

The CoFI activities flow is illustrated in Figure 3.1. in parallel with the implementation

activity. The testing activities are represented in rectangular boxes and the arrows show

what is received and produced by the activity. The activities of the first phase, in gray

boxes, differ from the IS-9646 by dealing with fault definitions and formal

specifications that have been added to automate the process. The concepts and

acronyms used in the activities flow description that are based on IS-9646, are

summarized in Table 3.1.

According to the IS-9646, the standard specification should provide the conformance

requirements for guiding both the implementation and the testing. Implementation

Conformance Statement (ICS) and Implementation extract Information for Testing

(IXIT) accompanying the unit under test (UUT4) have to be precisely informed and

delivered to the tester.

4 UUT is used instead of IUT (implementation under test) to comply with space jargon.

27

Define test purposes

Specify Abstract Test Suite

Select & Parameterize
the test cases

Execute the test
campaigns

Analyse test results

Ferry-injection
architecture

Implement
the services

Test purposes

Abstract Test Suite

Executable
Test Suite UUT

 Standard services
Specification

External Faults

Converte the test purposes and the
faults into a formal notation (FSM)

Derive test
cases

Derive fault
cases

Observable
Output Test Log

Expected
Output

Test Report &
Statistics

Test
Operation

Generate the Test
Report

Test Results

Test Notation

 ICS and IXIT

FIGURE 3.1- CoFI Testing Process.

28

TABLE 3.1 - Concepts and acronyms.

Test Purpose A prose description of a well-defined objective of testing, focusing on a single
conformance requirement or a set of them.

Test Notation The notation used to describe the abstract test case - implementation independent.
Abstract Test Suite (ATS) A set of Abstract Test Cases. An ATS refers to a particular test method.
Abstract Test Case A complete and independent specification of the actions required to achieve a

specific test purpose. It is complete in the sense that it is sufficient to enable a test
verdict unambiguously for each potentially observable test outcome. It is
independent in the sense that it should be possible to execute the derived
executable test case in isolation from other such test cases.

Implementation
Conformance Statement
(ICS)

A statement made by the supplier of an implementation, listing the capabilities that
have been implemented.

Implementation extra
Information for Testing
(IXIT)

A statement made by the supplier of an implementation which contains all of the
information related to the UUT and its testing environment, necessary to execute
the test suites.

Parameterized Executable
Tests Suite (PETS)

A selected set of test cases, in which all test cases have been parameterized in
accordance with the relevant ICS.

Test Report A document giving details of the testing that has been carried out, using a
particular ATS. It lists all the abstract test cases, identifies those for which
corresponding executable test cases were run, and presents the test verdicts.

UUT Unit under Test

3.4 The activity description

The CoFI testing process activities are described bellow.

3.4.1 Define Test Purpose

The preparation for testing phase starts with the definition of test purposes activity.

This activity receives the service standard specification and produces the test purposes.

According to IS-9646, a test purpose is the test objective. Here, the test purpose

summarizes the functionality of one service stated in the standard. For the

“telecommand verification” service standardized in ECSS-E-7041A, the corresponding

test purpose is “to verify the telecommand execution”, which defines the objective of

this service.

29

3.4.2 Specify Abstract Test Suite

This activity receives the test purposes and produces an abstract test suite (ATS). An

ATS is provided for each ECSS-E-70-41A service.

The ATS comprises test cases and fault cases which are implementation-independent

and focused on the detailed content of the specification. Scenarios are identified for one

test purpose, taking into account the service capability, e.g. the service requests and

reports defined in ECSS-E-7041A. There must be at least one test case created for each

situation in which the requests may be received (by situations we mean, the different

values carried into packet fields, counters, timers and replays that may eventually be

received). Fault cases are similar to test cases, except that they represent all the

exceptional situations and fault handling. The external faults defined within the problem

domain such as memory and communication faults help in deriving the fault cases.

Assumptions about the service testability (i.e., the points of control and observation) are

required for the definition of the tests. Only observable inputs and outputs are mapped

for the conformance requirements. In order to automate some steps in the generation of

test and fault cases we propose a new approach, using a formal step-by-step method,

which is presented in Chapter 4.

Besides the points of control and observation, facilities for executing the tests and

injecting the faults influence the choice of cases in ATS. The testing architecture

strongly affects the conformance requirements that can effectively be checked by the

testing means (Cavali, 1996).

The ferry-injection architecture, illustrated in FIGURE 3.2, was adopted as the mean

for executing the tests and injecting the faults (Araujo, 2000). In this architecture the

testing system and the system under testing are as independent as possible of each other.

This independence is obtained by the use of the ferry-clip (composed of the

components: active ferry, passive ferry and ferry-channel) concept defined by Chanson

(Chanson, 1989), (Zeng, 1985). The test engine component comprises an user

interaction interface and a mechanism to run an executable test script containing the

PETS. The test script controls the command flows through the PCOs. In this

30

architecture, memory and communication faults may be controlled by the Fault

Injection Controller (FIC) and executed by the Fault Injection Module (FIM). At this

moment, only communication faults involving loss, duplication, delay or alteration of

messages were considered. Research has been carried out for extending the fault-

injection architecture with memory faults facilities. Experiments in configuring this

architecture for testing space applications are discussed in (Martins, 2002) (Martins,

2003b).

FIGURE 3.2 - Ferry-Injection Architecture.

 SOURCE: Martins, (2003a).

Once the test/fault cases are defined, they may be translated into either TTCN5 test

notation or into a language supported by an automated testing tool. Each test/fault case

is associated to an expected output. This information is later used in the analyze test

result activity in the last phase.

3.4.3 Select and Parameterize the Test Cases

This activity starts the test operation phase. It is characterized by the choice of the

test/fault cases, from the ATS, to be applied to the UUT. This choice takes into account

Test Engine

Testing System System Under Test

 FIM

E x e c u t a b l e
S c r ip t

 FICUTLT

...

 Test Channel ...
Test Channel

Points of Control
Observation

Passive FerryActive Ferry

Ferry Channel

UUT

31

not only the testing architecture, but also the observability of the UUT. The selected

cases are completed and are parameterized with the provided implementation details

and information like values of counters and timers documented in ICS and IXIT. In this

stage the test set is named parameterized executable test suite (PETS) and the tests are

written in an executable language. In CoFI, the PETS may be given in a script-like

language, which may be one used in space systems tests, as PLUTO (ECSS, 2001), or in

any script-like language.

3.4.4 Execute the Test Campaigns

In this activity the PETSs are ready and the test campaigns are carried out on the UUT.

The reactions of the UUT are observed for normal and exceptional situations. All

inputs, outputs and other test events (i.e., the read-outs produced during the test

campaigns) are logged not only for the result analysis but also for future reference. The

observable output is associated to each executing test/fault case.

3.4.5 Analyze Test Results

This activity consists of comparing the observable output, generated during the test

campaigns, with the expected outputs provided by the Specify ATS activity. The

comparison may be manually or automatically-executed, once the outputs (expected and

observed) are written in a format to generate the formal test report.

3.4.6 Generate the Test Report

This activity consists of attributing to each executed test/fault case, one of the following

results: pass, fail, inconclusive, error in the abstract or executable test case, or abnormal

test case termination (classification defined in IS-9646). The complete result analysis

leads to a verdict about both the conformance requirements and the expected behavior

when the implementation is submitted to external faults. Once the comparison is

5 In earlier versions, TTCN stands for Tree and Tabular Combined Notation. The new meaning is Testing
and Test Control Notation apt for TTCN-3.

32

performed, statistics about the test execution may be included in the test report for

diagnostics.

Roughly, the CoFI differs from the IS-9646 testing process in the following aspects: it

needs to define faults; it includes fault cases besides the test cases in the ATS, it

provides an explicit comparison between the Expected and Observed outputs (automatic

comparison is possible if the specification is given in a formal notation like a Finite

State Machine (FSM)), it generates statistics about the test results, it includes the ferry-

injection architecture, it generates test cases from a formal specification need of faults

definition.

33

CHAPTER 4

APPROACH FOR STATE-BASED TEST AND FAULT CASES GENERATION

The approach to derive the abstract test and fault cases leads the tester to translate the

service specification in a formal notation, a Finite State Machine.

On the one hand, the formal notation-based specification allows the use of formal

algorithms to automatically generate test cases, thereby reducing much time and effort

with tests and assuring a greater coverage of the specification. On the other hand,

however, getting the specification into a notation that is acceptable for the formal

algorithms is hard and time-taking work, requiring many iterations (Merri, 1996).

In order to reduce the difficulty of creating a formal and complete specification, the

CoFI approach comprises a set of steps that make use of UML notation and the

definition of scenarios. Scenarios of normal situations generate the test cases and the

exceptional situations generate the fault cases. Thus, the number of cases generated each

time is smaller than if global modeling were used. In short, the main steps of the CoFI

approach are:

1) describe the service as an use case:

• identify the requests and reports handled by the service,

• identify the information represented by special variables or by the telecommand

packet data fields whose variation of values causes a service behavior to change

the service behavior. Represent this information as operational variables

(Binder, 2000- chapter 7),

• define a basic scenario, whose actors are the service provider and the service

client;

2) create normal and exceptional scenarios starting from the basic scenario, taking into

account situations deduced from the operational variables;

34

3) design Sequence Diagrams on mapping all requests, reports and operational

variables exchanged between the server and client providers. Separate the normal

and the exceptional handling situations and create:

• one normal sequence diagram that represents the normal scenarios and ,

• one exceptional sequence diagram that represents the exceptional scenarios;

4) create an event/state matrix where:

• a line represents an event. The events may be valid, invalid and inopportune and

they are represented by requests and by operational variables,

• a column represents a state. States are derived from the sequence diagrams

created in previous step. Take each interval between events in the server

provider line of the sequence diagram as a state,

• a cell has two elements: the output (or action) executed as a consequence of the

event occurrence and the target state. The cell represents the same information

that the transition in the state diagram. A transition is formally written as

[output/target_state],

• an output may be: (i) a normal, explicitly-specified output; (ii) an exceptional,

explicitly-specified output; (iii) an abnormal termination, or simply rejection of

the input (this is also named “illegal transition”); (iv) a non-specified output (in

this case the cell shall be completed with implementation information). In

observing the testing process these information are in the ICS and IXIT

documents (see Chapter 3);

5) create a normal finite state diagram only with the events triggering the normal,

explicitly-specified outputs. This step may be done in parallel with the step 4. In

fact, the sate/event matrix is not required to be complete before the step 5 being

performed;

6) generate the test cases submitting the normal finite state diagram to recheability

analysis algorithms for graph search. If a depth first search with intercalation

algorithm is used to generate test cases and this set of test cases is fully applied, the

35

tests completely cover the specification. In (Ural, 1992) the reader finds a

description of six formal methods for generating test sequences from FSM-based

specifications. The Condado tool (Martins, 1999) for generating the test comprises

the above cited characteristics;

7) create an exceptional finite state diagram only mapping the events that trigger the

exceptional explicitly-specified output and the illegal transitions (see step 4). This

step may be done in parallel with the step 4. The step 4 helps to identify the

exceptional information;

8) Generate the fault cases:

• Submit the exceptional finite state diagram to algorithms of graph traversing

(Lee, 1996) for automatically generate fault cases. A fault case is identified by

both a set of transitions necessary to the UUT reach the state in which the fault

has to be injected and the fault parameters. The fault must be such that is

supported for the FIC/FIM components of the testing architecture. The

communication faults are characterized by the following parameters:

• when - time or the message identification,

• what – fault type. For communication faultload, the fault types represent the

most common transmission errors like extra message (data insertion or

duplication), message loss (deletion), message fields modified (distortion

and reordering) and delayed (Holzmann, 1990),

• how - mask or byte position. The values to be attributed to how parameter are

obtained from: (i) the operational variables, (ii) the requests (iii) other

information available on the event/state matrix (see step 4),

• where - the communication fault which is associated to a PCO.

It is worth clarifying that this approach presupposes the following definitions:

• an implementation-independent test or fault case is characterized as a sequence

of inputs and corresponding expected outputs;

36

• a pair [input, expected output] or [fault, expected output] is represented in a

transition of a finite state machine. So, a test and fault case is a path starting

from the initial state and finishing in a reachable state.

• The fault to be injected is characterized by both the instant to inject (or the UUT

state) and by the fault instance. The instant to inject the fault is relatively defined

by the set of inputs from the initial state and subsequent inputs up to a specific

(reachable) state.

The following section illustrates the CoFI approach applied for the telecommand

verification service of the ECSS-E-70-41 for test and fault cases generation.

37

CHAPTER 5

ABSTRACT TEST AND FAULT CASES FOR THE ECSS-E-70-41 SERVICES

This section presents an example of an abstract test case and an abstract fault case

derived according to the approach defined in chapter 4, for the telecommand verification

service standardized in (ECSS, 2003).

The service description:

The telecommand verification service provides feedback about the execution of a given

telecommand at whichever stages are meaningful for that telecommand. Long-term

execution telecommands usually pass through the following stages: reception, execution

start, execution progress and execution completion. In deep space missions these stages

may take hours. So, when requiring this service, the client should indicate which reports

he or she wants, by setting in the Ack four-bit (AckAccBit, AckStartBit, AckProgBit,

AckCompBit) of the packet data field6, respectively for acceptance-report, start-report,

progress-report and completion-report. Table 2 summarizes the service capabilities by

listing the reports for success and for failures.

The capabilities, the service type and subtypes, the report for success and for failures are

summarized in TABLE 5.1. In column “Requests and Reports” it is presented minimum

and additional capabilities.

6 For more information about the telemetry and telecommand packet formats, the reader is referred to the
chapter 5 of the ECSS-E-70-41A

38

TABLE 5.1 – Capability Set of the telecommand verification service.

Capability setService
Type

Service description

Sub-type Requests and Reports

1 Telecommand
Verification

1
2
3
4
5
6
7
8

TC acceptance Report – Success
TC acceptance Report – Failure
TC execution started Report – Success
TC execution started Report – Failure
TC execution progress Report – Succes
TC execution progress Report – Failure
TC execution completed Report – Succes
TC execution completed Report – Failure

 FONTE: ECSS-E-70-41, (2003).

The test purpose for this service is to check the telecommand verification behavior. The

complete set of test purposes for the ECSS-E-7041A is presented in appendix B.

The CoFI approach for a test/fault case derivation:

In step 1 (see Chapter 4), the requests and reports are directly identified in the capability

set (shown in Table 5.1); the operational variables are identified in the Ack bits whose

four-bit combination reflects the ground-on-board communication operational scenarios.

The next steps require assumptions about the Points of Control and Observation

(PCOs), because only the observable events are taken into account. We are supposing

three PCOs for this service:

• PCO1 - observes the telecommand application data arrival,

• PCO2 - allows us to recognize the status of the telecommand execution (although

the telecommand may be performed by one or more Application Processes, this

information should be passed through only one communication mechanism

represented here by PCO2) and

• PCO3 - allows us to observe the generated telemetry reports to be sent to the

service client.

FIGURE 5.1, below, illustrates the three PCOs for the telecommand verification service.

39

v

v

v

telecommand
verification

service

PCO2

TC execution status

Telemetry
Reports

PCO1

PCO3

TC Application
data

FIGURE 5.1 - Points of Control and Observation for the telecommand verification

service.

Steps 2 and 3 are not shown here, whereas the complete event/state matrix established

in step is given in appendix C.

5.1 Test Case:

The steps 5 and 6 are dedicated to the normal situations from which the test cases are

derived. The four-bit Ack, identified in the first step of the approach as operational

variables become guard conditions in the fourth step. The events observed in PCOs and

the guards define partially a transition in the normal finite state diagram. The transition

definition is, then, added with the expected output. The transitions of the normal

situations compose both the event/state matrix and the normal finite state diagram.

A transitions is characterized by Input[guard]/Output.

For a normal finite state diagram: Input, guard and Output (for all transitions) are finite

sets:

• Input = set of observable (normal) events,

40

• Guard = set of conditions: logical expressions, including Boolean variables,

• Output = set of observable actions or outputs;

The Input, guard and Output sets for the telecommand verification service are:

Input = {TCarriv, AccOK, StartOK, PrOK, CompOK};

Guard(**) = { Nstep < Max (*) , AckAccBit, AckStartBit, AckProgBit,

AckCompBit};

Output = {receive TC, AccSucc_Rep, StartSucc_Rep, PrSucc_Rep,

CompSucc_Rep}

(*) The guard condition [Nstep < Max] was added to this set to indicate whether the

current execution-step (Nstep) has achieved its maximum allowed value (Max).

(**) All elements of the Guard set are associated to all transitions. The possible values

and the meaning of these elements are shown in Table 5.2.

TABLE 5.2 – Guard conditions for the telecommand verification service.

Guard Possible values Description

Nstep < Max v / f / - Execution-step is not the last / last
execution-step / don’t care

AckAccBit 1 / 0 / - Acceptance report required
/ not required / don’t care

AckStartBit 1 / 0 / - Start_execution report required
/ not required / don’t care

AckProgBit 1 / 0 / - Progress_execution report required
/ not required / don’t care

AckCompBit 1 / 0 / - Completion_execution report
required / not required / don’t care

41

The normal finite state diagram, representing the normal operational scenarios of

service, is illustrated in FIGURE 5.2.

AccOK [-01--]

-

AccOK [-0000]

-

AccOK[-11--]

AccSucc_Rep

StartOK [--000]

-

StartOK[--01-]

-

AccOK[-1000]

AccSucc_Rep

PrOK[---00]

-

CompOK[f---1]

CompSucc_Rep

TCarriv------------
receive TC

StartOK[--110]

StartSucc_Rep

StartOK[--100]

StartSucc_Rep

PrOK[f--01]

PrSucc_Rep

PrOK[f--01]

-

PrOK[v--1-]

PrSucc_Rep

PrOK[v--01]

-

PrOK[v--0-]

PrSucc_Rep

Tc Started
TC

Accepted

Progressing

Ini

TC
Received

FIGURE 5.2 - Normal finite state diagram mapping the normal situations of the

telecommand verification service.

A path P, composed of transitions from the normal finite state diagram is a test case.

Since the normal finite state diagram maps the events triggered in PCOs, the test cases

cover possible event combination occurred in the service implementation (if the

implementation conforms the specification).

A possible normal scenario reflects the Ack four-bit containing 1101, in which the

following reports should be generated to the Client: TC_acceptance_Success

TC_execution_started_Success and TC_progress_execution_ Success. This scenario is

42

mapped in the path p, given in the set p, which comprises the transitions draw in bold in

FIGURE 5.2.

p = {TCarriv / receive TC , AcOk[-11--] / AccSucc_Rep , StartOk[--110] /

StartSucc_Rep , PrOk[f--01] / - , CompOk[f---1] / CompSucc_Rep}

The Input and Output sets of the path p are given in the sets Inputp and Outputp

respectively.

Inputp = {TCarriv , AccOk[-11--], StartOk[--110], PrOk[f--01], CompOk[f---1] }

Outputp = {receive TC, AccSucc_Rep, StartSucc_Rep, CompSucc_Rep}.

This path p represents a test case, where Inputp contains the sequence of inputs to ve

submitted to the service implementation and Outputp contains the expected outputs

generated by the UUT whenever the sequence given in Inputp occurs in that order. The

test case, illustrated in TABLE 5.2, was translated into the TTCN. Here, the inputs and

outputs are associated to the respective PCOs. The TTCN was chosen for illustration

purposes as it is an ISO standard test notation.

43

TABLE 5.3 – Dynamic Behavior Description Test Case.

Test Case Dynamic Behavior

Test Case Name : telecommand acceptance, start and completion execution report with success

Purpose : To verify the telecommand execution.

N Behavior Description Constraint Comments Expected Output

1 PCO1 ? TCarriv A TC application data arrives
requiring reports for acceptance,
starting and completion execution
steps

-

2 PCO2 ? AccOk
PCO3 ! AccSuc_Rep

[Ackbits = 1---] AccOk event trigged at the end of
fields verification

Acceptance Success
Report

3 PCO2 ? StartOk
PCO3 ! StartSuc_Rep

[Ackbits = -1--] StartOk event trigged at the end of
the first execution step

Start-execution
Success Report

4 PCO2 ? PrOk [Nstep =1 = Max]
[Ackbits = --01]

ProgOk event trigged at the end of
the second execution step. Only one
progressing step exist, i.e, the TC
requires 3 steps (start, 1 progress
and 1 completion)

-

5 PCO2 ? CompOk
PCO3 ! CompSuc_Rep

[Nstep =1 = Max]
[Ackbits = ---1]

CompOk event trigged at the end of
completion execution

Completion-execution
Success Report

Detailed Comments:
The “?” indicates a received event, the “!” indicates a send operation.
PCO1: is the interface with the Packetization Protocol layer in the satellite System.
PCO2: is the interface with the TC executing application at the application level in satellite System
PCO3: is the interface with the ground system
TCarriv: is an event that carry out telecommand packet data for TC verification purposes.

In the step 6 the normal scenarios represented in the state diagram of FIGURE 5.2 were

submitted to the Condado tool. A set of 38 test cases were generated. These test cases

are presented in appendix D.

5.2 Fault Case

The telecommand verification service specifies that reports indicating failure are always

transmitted, so failure reports are not required in packet data fields as they are for the

success reports.

In step 7 (and step 4) all the failure reports were associated to exceptional situations,

mapped into the exceptional scenarios, and represented in the exceptional finite state

diagram, shown in FIGURE 5.3.

44

AccOK [-01--]

-

StartOK[--01-]

-

AccNOK[-----]

AcFail_Rep

CompNOK[-----]

CoFail_Rep

TCarriv------------
receive TC

StartNOK[-----]

StFail_Rep

PrNOK[-----]

PrFail_Rep

PrOK[f--01]

-

Progressi
ng

TC
Accepted

TC
Received

TC
Started

Ini

FIGURE 5.3 - Exceptional finite state diagram mapping the Exceptional Situations of

the telecommand verification service.

In step 8, the suite of fault cases are derived from the exceptional finite state machine.

The fault case suite includes only simple paths instead of requiring interleaving of

events as in the normal case. This suite may be derived from the transition tree, shown

in FIGURE 5.4, in which a fault case is a sequence of transitions that start from INI

state and reach the INI again, but traversing all other states once. (It is supposed that the

occurrence of a failure cause the system came back to its initial state.)

45

AccOK [-01--]

-

StartOK[--01-]

-

AccNOK[-----]

AcFail_Rep

CompNOK[-----]

CoFail_Rep

TCarriv------------
receive TC

StartNOK[-----]

StFail_Rep

PrNOK[-----]

PrFail_Rep

PrOK[f--01]

-

Ini

TC
Received

Ini

Ini

Ini

Ini

TC
Accepted

TC Started

Progressing

FIGURE 5.4 - Transition Tree of the mapping the Exceptional Situations of the

telecommand verification service.

The Fcases set contains the four fault cases derived from the transition tree. Each element

of Fcases is a sequence of pairs (input[guard]/output) and (fault[guard]/output).

Fcases = { (TCarriv/ receive TC, AccNOK[-----]/ AcFail_Rep) ;

 (TCarriv/ receive TC, AccOK[-01--]/ - , StNOK[-----]/ StFail_Rep) ;

 (TCarriv/ receive TC, AccOK[-01--]/ - , StOK[--01-]/ - , PrNOK[-----]/

PrFail_Rep) ;

(TCarriv/ receive TC, AccOK[-01--]/ - , StOK[--01-]/ - , PrOK[f--01]/ - , CompNOK/

CompFail_Rep) }

The Fcases set contains only the first part characterizing the fault cases, the relative

instant to inject the fault. The fault instance (see Section 4), depends on the parameters

of the exceptional scenarios.

46

A possible exceptional scenario reflects the Ack four-bit containing 0100 and a failure

in the telecommand execution progress stage. This scenario triggers the generation of

the following reports to the client: TC_execution_started_Success and

TC_progress_execution_Failure. The fault case contains:

• the fault relative instant is given by the path pf illustrated in Ppf set; the inputs

are in Ipf set, and expected outputs are in Opf set.

Ppf = {(TCarriv/ receive TC, AccOK[-01--]/ - , StOK[--01-]/ - , PrNOK[----

-]/ PrFail_Rep)}

Ipf = { TCarriv, AccOk[-10--], StOk[--01-] };

Opf = {receiveTC, PrFail_Rep}.

The inputs are associated to the PCOs as follows: TCarriv in PCO1 and

AccOK, StartOK in PCO2

• the parameters of the fault instance has the following values :

• when = following the last normal event given in Ipf;

• what (fault type) = extra message;

• how = data insertion of the PrNOK event;

• where = in PCO2.

This abstract fault case, written in TTCN, is shown in TABLE 5.3.

47

TABLE 5.4 –Dynamic Behavior Description Fault Case.

Test Case Dynamic Behavior

Test Case Name : start execution report with success and failure in the progress

Purpose : To verify the telecommand execution.

N Behavior Description Constraint Comments Expected Output

1 PCO1 ? TCarriv A TC packet data arrives, requiring
reports for starting execution step

Receive TC

2 PCO2 ? AccOk [Ackbits = 01--] AccOk event trigged at the end of
fields verification

-

3 PCO2 ? StartOk
PCO3 ! StartSuc_Rep

[Ackbits = -1--] StartOk event trigged at the end of
the first execution step

Start-execution
Success Report

4 PCO2 ? PrNOk
PCO3 ! PrFail_Rep

ProgNOk event trigged at the end of
the second execution step.

Progress Failure
Report

48

49

CHAPTER 6

RELATED WORK

In literature one may find a great number of studies not only on formal models of the

system behavior but also on test cases generation from state-based specifications mainly

for protocol testing. Good overview of test case generation may be found in (Dssouli,

1999), (Lee, 1996), (Bochmann, 1994), etc.. Tretman has established a formal definition

of the conformance relation between the implementation and the specification

(Tretmans, 1999). An updated survey of communication protocol testing focused on test

sequence generation methods, testing tools and experience reports is presented in (Lai,

2002).

The CoFI process may be compared with the SAMSTAG (Grabowski, 1994), N+

(Binder, 2000), TOP (Koné, 2004), as they all are based on formal definitions of the

specification, they orients the test cases generation from a state-based specification.

The testing method named ‘SDL and MSC based test case generation’ (SAMSTAG)

aims at developing automatic generation of abstract test cases for telecommunication

protocols. It formally defines both the specifications and the test purposes. The method

assumes that the specification is written in Specification Description Language (SDL)

and the test purposes are defined by a Message Sequence Chart (MSC). Besides

formalizing the test purposes, the method defines the relation between test purposes,

protocol specifications, and the test cases.

The TOP method handles interoperability test automation for communication systems.

The test case generation uses an on-the-fly basis, i.e., the global behavior graph of the

system under test is not previously computed; instead, test paths are extracted from an

analysis of sub-specifications of the communicating entities. The tests are deployed over

the CORBA platform.

In (Binder,2000; chapter 7) the N+ state-based testing strategy, focusing on UML state

models developed for object-oriented implementations, is presented. In this strategy, the

50

test cases aim at covering round-trip and sneak paths of a state-based specification. The

sneak paths test illegal or non explicitly-defined transitions, while the round-trip covers

the explicitly-modeled transitions. A response matrix is created with the complete

information about the implementation under test and the sneak paths are developed from

the response matrix. Although the N+ is neither for protocol testing nor based on the IS-

9646, the idea of distinguishing the normal from exceptional situations when dealing

with test case generation was incorporated into the CoFI process.

51

CHAPTER 7

CONCLUSION

This report presented a testing process named CoFI (Conformance and-Fault-Injection)

which is based on the conformance testing process standardized in IS-9646 for protocol

certification. The CoFI testing activities comply with software-implemented fault

injection (SWIFI) and test automation were added over this basis.

The CoFI process roughly instance the IS-9646 methodology and framework for space

software services testing.

The CoFI process includes an approach for generating test and fault cases with which a

reusable abstract test suite is created.

The telecommand verification service, defined in the ECSS-E-70-41A standard and

prepared by the European Space Agency (ESA), was used to illustrate the generation of

an abstract test case and an abstract fault case.

The CoFI pproach leads to improvement not only in the testing activities efficiency, but

also in the reliability of space application implementing the PUS services. Additionally,

it offers a real opportunity to reduce the testing costs in a mission, since it guides the

design of the test cases that are still frequently performed by testers by interpreting

specifications written in natural language.

The CoFI process requires yet further researches. Although the test cases were

presented here in TTCN, the notation recommended by ISO, the CoFI process does not

determine a test and fault case description language. Studies must be carried out on the

use of the language like PLUTO to write the Parameterized Executable Test Suite

(PETS). Other points that have being studied are related to the fault formal

characterization and the ferry-injection testing architectures supporting multi-point

communication.

52

Acknowledgment

We would like to thank researchers from the European Space Agency that motivated us

to continue research on certification-related space software procedures. We are grateful

to our colleague M. Fatima Mattiello-Francisco for encouraging this work.

53

REFERENCES

Ambrosio, A.M.; Martins E.; Mattiello-Francisco M.F.; Silva C. S. ; Vijaykumar N. L.

On the use of test standardization in communication space applications. In: International

Conference on Space Operations, SpaceOPs 8., 2004. 17-21 May, Montreal, Canadá.

Proceedings... Montreal:AIAA, 2004. Available in the digital library URLib:

<www.spaceops2004.org>. Access in: 2 sep. 2004.

Araújo, M.R.R. Fsofist - uma ferramenta para teste de protocolos tolerantes a falhas.

2000. 52p. Dissertação (Mestrado em Ciência da Computação) – Instituto de

Computação Universidade de Campinas, Campinas. 2000.

Arlat, J.; Aguera, M.; Amat, L.; Crouzrt,Y.; Fabre, J.-C.; Lapri, J.-C.; Martins, E.;

Powell,D Fault Injection for Dependability Validation: A Methodology and Some

Applications. IEEE Transactions on Software Engineering, v. 16, n.2, p. 166-182,

1990. (ISS 0098-5589).

Instituto Nacional de Pesquisas Espaciais (INPE)/ Universidade Estadual de Campinas
(UNICAMP). ATIFS project. Available in the digital library URLib: In:
<http://www.inpe.br/atifs>. Access in: 5 sep. 2002.

Baumgarten, B.; Giessler, A. OSI conformance testing methodology and TTCN.

Amsterdan:Elsevier, 1994. 328p.

Binder, R. Testing object-oriented systems - models, patterns and tools. Boston:

Addison-Wesley, 2000. 1191p.(ISBN 0-201-80938-9).

Bochmann, G.; Petrenko, A . Protocol Testing: review of Methods and Relevance for

Software Testing. In: International Symposium on Software Testing and Analysis, 1994.

17-19 August 1994, Seatle, Washington, USA. Proceedings... Seatle: ACM Press.

p.109-124

Chanson, S.T.; Lee, B.P.; Parakh, N.J.; Zeng H.X. Design and implementation of a ferry

clip test system. In: Symposium on Protocol Specification Testing & Verification, IFIP

9.,1989, Enscchede, The Netherlands. Proceedings... The Netherlands: North-Holland,

p.101-118, 1990.

http://www.inpe.br/atifs

54

Cavali, AR.; Favreau, J.P., Phalippou, M. Standardization of formal methods in

conformance testing of communication protocols. Computer Networks and ISDN

Systems, n. 29, p.3-14, 1996.

Consultative Committee for Space Data Systems (CCSDS). CCSDS 910.0-Y-1 - Space

link extension services – executive summary. Yellow Book. Issue 1. April, 2002.

Available in the digital library URLib:

<http://www.ccsds.org/ccsds/recommandreports.html>. Access in: 2 jun. 2004.

Consultative Committee for Space Data Systems (CCSDS). CCSDS-201.0-B-3 -

Telecommand part 1—channel service. Blue Book. Issue 3. June 2000. Available in the

digital library URLib: <http://www.ccsds.org/ccsds/recommandreports.html>. Access

in: 2 jun. 2004.

------. CCSDS-202.0-B-3 -Telecommand part 2 - data routing service. Blue Book.

Washington DC: NASA. . Issue 3. June 2001a.

------. CCSDS-203.0-B-3 -Telecommand part 3 - data management service. Blue Book.

Washington DC: NASA. Issue 2. June 2001b.

Dssouli, H.; Salek, K.; Aboulhamid, E; En-Nouaary, A ; Bourhfir, C. Test Development

for Communication Protocols: Towards Automation. Computer Networks, n. 31, p.

1835-1872, 1999.

European Cooperation for Space Standardization (ECSS). Standards. Noordwijk: ESA

publication Division. Available in the digital library URLib: <http://www.ecss.nl/>.

Access in: 2 jun. 2003.

------. ECSS-E-70-32A - Space engineering Procedure Language for User in Test and

Operations: PLUTO. Issue Draft 5, 2001. Noordwijk: ESA publication Division.

Available in the digital library URLib: <http://www.ecss.nl/>. Access in: 6 dec. 2003.

http://www.ccsds.org/ccsds/recommandreports.html
http://www.ccsds.org/ccsds/recommandreports.html
http://www.ecss.nl/
http://www.ecss.nl/

55

------. ECSS-E-70-41 A – Ground systems and operations: telemetry and telecommand

Packet utilization. January, 2003. Noordwijk: ESA publication Division. Available in

the digital library URLib: <http://www.ecss.nl/>. Access in: 2 jun. 2003.

Grabowski, J. SDL and MSC Based Test Case Generation: An Overall View of the

SAMSTAG Method. Berne: University of Berne, 1994. 23p. (IAM-94-0005).

Holzmann, G. J. Design and validation of computer protocols. Englewood Cliffs:

Prentice Hall, 1990. 512p. (ISBN 0-13-539834-7). Available in the digital library

URLib: <http://spinroot.com/spin/doc/book91.html>. Access in:02 sep. 2002.

International Organization for Standardization.(ISO). IS 7498-1 - Information

technology - Open Systems Interconnection - Basic Reference Model: The Basic Model.

Geneve, 1994.

International Organization for Standardization (ISO/IEC). IS 9646 - International

standard conformance testing methodology and framework. Geneve, 1991.

International Telecommunication Union - Telecommunication Standardization Sector of

ITU (ITU-T). Recomendation X.290 – OSI conformance testing methodology and

framework for protocol recommendations for ITU-T applications – general concepts.

Geneve, April, 1995.

Koné, O. An Interoperability Testing Approach to Wireless Application Protocols.

Journal of Universal Computer Science, v. 9, n.10, p. 1220-1243, 2003.

Lai, R. A survey of communication protocol testing. The Journal of Systems and

Software, n. 62, p. 21-46, 2002.

Larson, W.; Werts, J. Space mission analysis and design. Dordrecht: Kluwer

Academic Publisher, 1992. 865p.

Lee,D.; Yannakakis,M. Principles and methods of testing finite state machines: a

survey. Procceedings of IEEE, v.84, n. 8, p. 1090-1123, 1996.

http://www.ecss.nl/
http://spinroot.com/spin/doc/book91.html

56

Madeira, H.; Some, R. R.; Moreira, F.; Costa, D.; Rennels, D. Experimental evaluation

of a COTS system for space applications. In: International Conference on Dependable

Systems and Networks (DSN'02), June 23 - 26, 2002, Washington, D.C., USA.

Proceedings... Washington, D.C.: IEEE Computer Society, 2003. P.325-330. Available

in the digital library URLib:

<http://computer.org/proceedings/dsn/1597/15970325abs.htm>.

Martins, E. ; Sabião, S.B.; Ambrosio, A. M. ConData: a Tool for Automating

Specification-based Test Case Generation for Communication Systems. Software

Quality Journal, v.8, n. 4, p. 303-319, 1999.

Martins, E.; Mattiello-Francisco M.F.; Morais, A. N.P. Uso da ferramenta de testes

FSOFIST na validação de uma aplicação espacial. In: Jornada Ibero-Americana de

Engenharia de Software e Engenharia de Conhecimento, 2., 2002. Salvador, BA, Brasil.

Anais... 2002. 1 CD-ROM..

Martins, E.; Ambrosio, A.M; Mattiello-Francisco M.F. ATIFS: a testing toolset with

software fault injection. In: Workshop UK Testing Research, 2. (SoftTest), 4-5

September 2003,, York, England. Proceedings... York: Department of Computer

Science/University of York, 2003a.

Martins, E.; Mattiello-Francisco, M.F. A Tool for Fault Injection and Conformance

Testing of Distributed Systems. In: Latin-American Dependable Computing Symposim,

1., São Paulo, Brasil, october 2003. Lecture Notes in Computer Science. Berlin:

Springer Verlag, p. 282-302, 2003b.

Mazza, C. Standards: the foundations for space IT. Darmstadt, Germany, 2000.

Lecture given during the Workshop on Space Information Technology in the 21st

Century, 27 sep. 2000. Available in the digital library URLib:

<www.esoc.esa.de/pr/documents/workshops/it_2000/it_in_future/esa_c_mazza.ppt >.

Access in:02 sep. 2002.

http://computer.org/proceedings/dsn/1597/15970325abs.htm

57

Merri, M ; Rüting, J.; Schurman, P. Validation of the ESA Packet Utilization Standard

by object-Oriented Analysis. In: International Conference on Space Operations, 4.

(SpaceOPs 96), 16-20 September 1996, Munich, Germany. Proceedings.... Gilching:

CAM GmbH. 1 CD-ROM.

Merri, M.; Melton, B.; Valera, S.; Parkes, A. The ECSS Packet Utilization Standard

And Its Support Tool. In: International Conference on Space Operations, 7.

(SpaceOPs02), 9-12 October 2002, Houston, USA. Proceedings... Houston: AIAA,

2002. (ISBN 1-56347-585-5). Available in the digital library URLib:

<www.spaceops2002.org/papers/spaceops02-p-t5-06.pdf >Access in:02 fev. 2004.

Mertens, M. Advanced Protocol Testing Methods and Tools. In: International

Conference on Space Operations, 7. (SpaceOPs02), 9-12 October 2002, Houston, USA.

Proceedings... Houston: AIAA, 2002. (ISBN 1-56347-585-5). Available in the digital

library URLib: <www.spaceops2002.org/papers/spaceops02-a-t1-31.pdf>. Access in:02

fev. 2004.

Tretmans, J.; Belinfante, A. Automatic Testing with Formal Methods. In: Conference on

Software Testing Analysis and Review, 7. (EuroSTAR´99), 8-12 November,1999,

Barcelona, Spain. Proceedings... Galway: EuroStar Conferences, 1999.

Ural, H. Formal methods for test sequence generation. Computer Communication,

v.15, n.5, p.311-325, june 1992.

Voas, J. M.; McGraw, G. Software fault injection: inoculating programs against erros.

New York: John Wiley & Sons, INC. 1998. 353p. (ISBN 0-471-183810-4).

Zeng, H. X.; Rayner, D. The impact of the Ferry concept on protocol testing. In:

International Conference on Protocol Specification, Testing and Verification, 5., June

10-13, 1985, Toulouse-Moissac, France. Proceedings... The Netherlands: North-

Holland - IFIP WG6.1. 1985. p. 519–531. (ISBN:0-444-87881-5).

58

59

APPENDIX A
OVERVIEW OF THE IS-9646 - CONFORMANCE TESTING METHODOLOGY

AND FRAMEWORK

A-1 -Protocol certification issues

The IS-9646 standard is oriented towards practical needs. It incorporates a great deal of

practical experience from test experts which have been involved in concrete test issues.

In guiding the test of a standardized protocol implementation, ISO allows a wide

acceptance of test results produced by different laboratories (testers). The definition of

effective and well-accepted schemes of testing and certification avoids costly repetitions

or variations of conformance tests of the same implementation.

Three entities are involved in the certification process: the Standardization

Organization, the Client and the Testing Laboratory, as illustrated in figure A.1.

The Standardization Organization defines de product specifications and proformas

(questionnaires) to be filled in by the Client. These questions aim at making clearer and

unambiguous the conformance requirements. The Client, who implemented the product

to be tested, fills the proformas (PICS and PIXIT). Finally, the Testing Laboratory

conducts the conformance assessment of the Implementation Under Test (IUT) and

generates the Protocol Conformance Test Report (PCTR).

The IS-9646 standard defines the testing laboratory and clients role and the documents

to be generated for all test phases. Sub-section A.2 discusses the ISO conformance

testing process, its phases and activities and concepts.

60

Standardization Organization

ISO Standard
Protocol

Specification

PICS e PIXIT
Proformas
(questionaire)

Client

PICS
(Protocol Implementation
Comformance Statement)

Client fill in

Test Laboratory

PCTR
(Protocol Conformance

Test Report)

PIXIT
(Protocol Implementation

eXtra Information for Testing)

IUT
(Implementation Under Test)

FIGURE A.1: Standardization Organization vs. Client vs. Testing laboratory

A-2 Conformance Testing Process:

The IS-9646 standard defines the conformance testing as testing the extent to which an

implementation under test is a conforming implementation. According to this standard

the activities for performing the conformance evaluation of an implementation against

its specification is divided into three phases: Preparation for testing, Test operations and

Test report production. The ISO conformance testing process, illustrated in Figure A.1,

starts from the ISO standard protocol specification.

The protocol specification includes dynamic and static conformance requirements and

both the Protocol Implementation Conformance Statement (PICS) and the Protocol

Implementation extra Information for Testing (PIXIT) proformas7. The conformance

requirements guide both the implementation (in right side of figure) and the testing (in

7 A questionnaire to be fulfilled by the implementation responsible

61

left side of figure). The PICS proforma must be precisely filled in with details of the

implementation under test (IUT) to be delivered to the tester.

The standard comprises many concepts and acronyms. Table 1 summarizes only the

concepts used in this description. The testing process is described phase-by-phase in the

following.

FIGURE A.2 – ISO conformance testing process

Define Test Purposes

Specify
Abstract Test Suite

Select &
Parameterize

 test cases

Execute the test
campaigns

Analyse the
results

Test Results

Test purposes

Standardized Test methods

Test notation

Implement
the protocol

Standardized ATS

Parameterized Executable
Test Suite (PETS) IUT

 Prot. Implementation
Conf. Statement
(PICS & PIXIT)

ISO Standard
Protocol

Specification

Preparation for Testing

Test Operations

Test Report Production

Generate Test
Report

Protocol Conf.
Test Report

(PCTR)

62

TABLE A.1 – ISO-conformance testing concepts
Test Purpose A prose description of a well defined objective of testing, focusing on a single

conformance requirement or a set of them.

Test Notation The notation used to describe the abstract test case - implementation independent.
Abstract Test Suite (ATS) A set of Abstract Test Cases . An ATS refers to a particular testing method.
Abstract Test Case A complete and independent specification of the actions required to achieve a

specific test purpose. It is complete in the sense that it is sufficient to enable a test
verdict unambiguously to each potentially observable test outcome. It is
independent in the sense that it should be possible to execute the derived
executable test case in isolation from other such test cases.

Prot. Impl. Conformance
Statement (PICS)

A statement made by the supplier of an implementation listing the capabilities
have been implemented.

Protocol Implementation
extra Information for
Testing (PIXIT)

These information are about the SUT (e.g., addressing, realization of the Upper
Tester within the IUT,etc.); they may precise some parameters or timer; help
determine testable and untestable capabilities; and may be administrative
information.

Parameterized Executable
Tests Suite (PETS)

A selected set of test cases, in which all test cases have been parameterized in
accordance with the relevant PICS.

Protocol Conformance
Test Report (PCTR)

A document giving details of the testing carried out using a particular ATS. It lists
all the abstract test cases and identifies those for which corresponding executable
test cases were run, and the test verdicts.

A-2.1 Test Phases Description

The first phase, Preparation for testing, starts with the definition of the test purposes

based on the conformance requirement stated in the ISO Standard Protocol

Specification. The specification is given in a textual notation and the test purposes are

defined based on the experience of good testers. For the next step it is recommended to

derive generic test cases, which should describe the necessary actions to achieve the test

purpose without to consider the environment in which the actual testing will be

performed. (ISO do not rule neither how to define the test purposes nor how to derive

the test cases). Each generic test case is converted the abstract test case. In this step a

particular testing method and the restrictions implied by the environment are taken into

consideration. The complete set of test cases comprises the Abstract Test Suite (ATS).

The test cases are described in a test notation defined by ISO, the Tree and Tabular Test

Notation (TTCN), an implementation-independent language. Details of the

implementation like timer values, communication port addresses are later added to the

test cases definition. The ISO protocol specification may have different profiles. There

63

will be one ATS to each profile. The ATS is implementation-independent, but it is

associated to one of the four standardized test methods specified in the standard.

A test method is a kind of architecture of the testing system. It defines a model for the

accessibility of the implementation to the tester, in terms of the points of control and

observation (PCO). Furthermore, if the IUT runs in the same testing system or is

remotely accessible, the test method is local or distributed, respectively. The reader is

referred to (Baumgarten, 1994) (ISO, 1991), (X.290, 1995), (Tretman, 1999), for more

details about test methods.

Once the ATS is ready the Test operation phase may begin. In this phase, test cases are

selected from the standardized ATS according to the protocol implementation

conformance declaration (PICS) related to the implementation to be tested. The selected

test cases are parameterized with the provided implementation information, i.e., values

available in the PICS (and the PIXIT) like network addresses, counters and timers. The

abstract test cases are then transformed into the parameterized executable test suite

(PETS) taking into account the environment where the IUT is in. Once the PETS are

complete the test campaigns are carried out and the results are analyzed.

The last phase, Test report production, consists of the preparation of the Protocol

Conformance Test Reports (PCTR). It may begin before the test operations are

complete. During the test campaign the behavior of the IUT is observed and logged. For

each test case one of the following results is possible:

• pass,

• fail,

• inconclusive,

• error in the abstract or executable test case or,

• abnormal test case termination.

64

All results are analyzed leading to a verdict about the conformance of the IUT with

respect to the standard protocol specification, the conformance requirements.

Conformance testing does not include performance, robustness and reliability.

A-3 The Testing Methods overview

A testing method is a description of how the IUT is to be tested. It corresponds to points

of control and observation available in SUT. A testing method describes an abstract

testing architecture consisting of a configuration of functions (LT, UT, LTCF and TCP)

as applicable to a context8. The relationships of these functions to the Testing System

and the System under Test (SUT) is also described in a testing method. The IS-9646

defines four kinds of testing methods. Just for illustration, figure 3 shows the Local

Testing Method in Single-Party context.

Each testing method determines the Points of Control and Observation (PCOs) and the

test events (i.e., Abstract Services Primitives (ASPs) and Protocol Data Units (PDUs))

which will be contemplated in an ATS. The PCOs and the events are the key elements

for the conformance test, because the IUT is a black-box component from the tester

point of view.

Service Provider

TCP

Upper Tester

Lower
Tester

Test System

 IUT

 System under Test
(SUT)

PCO

ASPs

ASPs

PDUs

FIGURE A.3: Local test method in Single-Party context

8 The context correspond to the number of communication channels required by IUT. The context may
be: Single-party (one comm. channel); Multi-party (several comm. channels)

65

TABLE A.2: Concepts related with test methods

LT Lower Tester
UT Upper Tester
LTCF Lower Tester Control Function
TCP Test Coordination Procedure
PCO Point of Control and Observation. A point within a testing environment where the occurrence of

test events is to be controlled and observed. (Characterized by a set of ASPs and/or PDUs).
ASP Abstract Service Primitive. An implementation-independent description of an interaction

between a service-user and a service-provider.
PDU Protocol Data Unit

66

67

APPENDIX B

TEST PUPOSES FOR THE STANDARD PUS SERVICES

In short, the test purposes to the services of this standard are the following:

(i) to verify the telecommand execution,

(ii) to distribute device commands,

(iii) to report housekeeping & diagnostic data,

(iv) to report parameter statistics,

(v) to report events,

(vi) to manage memory,

(vii) to manage function,

(viii) to manage time,

(ix) to schedule on-board operations,

(x) to execute on-board monitoring,

(xi) to transfer large amount of data,

(xii) to control packet forwarding,

(xiii) to execute on-board storage and retrieval,

(xiv) to execute on-board pre-defined test,

(xv) to execute on-board operations procedure,

(xvi) to execute event-action.

68

69

APPENDIX C

THE EVENT/STATE MATRIX FOR THE TELECOMMAND VERIFICATION
SERVICE

This appendix presents the event/state matrix elaborated with information about the

telecommand verification service. This matrix aims at helping the tester to provide the

completeness assumption to the service specification for testing purposes. The

completeness assumption means that each state of the UUT, can accept and respond to

all possible inputs that trigger the system.

The matrix contains a sequential numeration of the transitions in the lines. To each

transition, in a line, one may find the correspondent event (or input), the guard values

and, in each cell of the states column, the expected action (or output) and the target

state. (The target state is the reached state when the transition is fired).

70

Table C.1- Event/State Matrix for the telecommand verification service

States

Guards

Ini Tc Received Tc Accepted Tc Started Progressing

T
ra

ns
iti

on
s

Events

Nstep
< Max

Ack
Acc
Bit

AckSt
artBit

Ack
Prog
Bit

AckCo
mpBit

0 TCarriv - - - - - Tc Received/

Receive TC

1 - off off off off Ini/ - -

2 - on off off off Ini/
AccSucc_Rep

3 - off on - - Tc Accepted/ -

4

AccOK

- on on - - Tc Accepted/
AccSucc_Rep

5 AccNOK - - - - - Ini/ AcFail_Rep

6 - - off off off Ini/ -

7 - - on off off Ini/
StartSucc_Rep

8

StartOK

- - on on off Tc started/
StartSucc_Rep

71

Table C.1- Event/State Matrix for the telecommand verification service (continuing).

9 - - off on - Tc started/ -

10 StartNOK - - - - - Ini/ StFail_Rep

11 - - - off off Ini/ -

12 v - - on - Progressing/
ProgSucc_Rep

13 f - - off on Progressing/ -

14

ProgOK

f on off Ini/
ProgSucc_Rep

15 PrNOK - - - - - Ini/ PrFail_Rep

16 v - - on - Progressing/
ProgSucc_Rep

17

PrOK

v - - off on Progressing/ -

18 CompOK f - - - on Ini/
CompSucc_Rep

19 CompNOK Ini/ CoFail_Rep

72

73

APPENDIX D

TEST CASES GENERATED BY THE CONDADO TOOL FOR THE
TELECOMMAND VERIFICATION SERVICE

The Condado is a tool developed in previous research (Martins, 1999) (Martins, 2003a). This

tool is able to automatically generate test cases based on an extended finite state machine. It

implements an algorithm of search depth graph, making an interleaving among transitions.

The test cases provides an exhaustive coverage of the specification as the tool implements a

state-based test method that exhaustively combines all transitions to derive the test cases. So,

all possible invalid states and all event/action faults may be revealed (Binder,2000).

Condado was developed on the protocol testing concepts basis. Only two PCOs, one for the

lower tester (L) and one for the Upper tester (U), are taken into account, for the moment, for

the test case generation.

Three PCOs were conceived for the telecommand verification service. So, in order to use

Condado, we considered PCO1 and PCO3 in L, and made mentally a change in the abstract

test suite, on substituting L for PCO1 whenever the next message is TCarriv or receiveTC, or

for PCO3 in the other cases. The U should be substituted by PCO2.

Only the normal finite state diagram, illustrated in FIGURE 5.2., was submitted to Condado.

The 38 abstract test cases generated by Condado are listed bellow. Each case is separated by

a white line. The word senddata and recdata means respectively send and receive the

information specified in the second parameter (data, event or a primitive). The first

parameter represents the PCO. For Condado, the letters L and T state for lower and upper

testers.

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-0000]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-1000]) recdata(L,AccSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--000]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--100]) recdata(L,StartSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)

74

senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[---00]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,ProgSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[---00]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)

75

senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,ProgSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-01--]) recdata(L,)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--000]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--100]) recdata(L,StartSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)

76

senddata(U,PrOK[---00]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,ProgSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--110]) recdata(L,StartSucc_Report)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[---00]) recdata(L,)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)

77

senddata(U,PrOK[f--01]) recdata(L,ProgSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[v--1-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,PrOK[v--01]) recdata(L,)
senddata(U,PrOK[v--0-]) recdata(L,ProgSucc_Report)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)

senddata(L,TCarriv) recdata(L,receiveTC)
senddata(U,AccOK[-11--]) recdata(L,AccSucc_Report)
senddata(U,StOK[--01-]) recdata(L,)
senddata(U,PrOK[f--01]) recdata(L,)
senddata(U,CompOK[f---0]) recdata(L,CompSucc_Report)
38

	PÁGINA DE ROSTO
	ABSTRACT
	RESUMO
	SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACROMNS AND ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 SPACE COMMUNICATION AND THE ROLE OF THE PACKET UTILIZATION SERVICES
	CHAPTER 3 COFI: CONFORMANCE-AND-FAULT-INJECTION TESTING PROCESS
	3.1 Conformance Testing
	3.1.1 Positive Points for Using the ISO-9646

	3.2 Software-Implemented Fault-Injection Technique
	3.2.1 Positive Points for Using SWIFI

	3.3 The CoFI activity flow
	3.4 The activity description
	3.4.1 Define Test Purpose
	3.4.2 Specify Abstract Test Suite
	3.4.3 Select and Parameterize the Test Cases
	3.4.4 Execute the Test Campaigns
	3.4.5 Analyze Test Results
	3.4.6 Generate the Test Report

	CHAPTER 4 APPROACH FOR STATE-BASED TEST AND FAULT CASES GENERATION
	CHAPTER 5 ABSTRACT TEST AND FAULT CASES FOR THE ECSS-E-70-41 SERVICES
	5.1 Test Case:
	5.2 Fault Case

	CHAPTER 6 RELATED WORK
	CHAPTER 7 CONCLUSION
	Acknowledgment
	REFERENCES
	APPENDIX A OVERVIEW OF THE IS-9646 - CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK
	APPENDIX B TEST PUPOSES FOR THE STANDARD PUS SERVICES
	APPENDIX C THE EVENT/STATE MATRIX FOR THE TELECOMMAND VERIFICATION SERVICE
	APPENDIX D TEST CASES GENERATED BY THE CONDADO TOOL FOR THE TELECOMMAND VERIFICATION SERVICE

