
STER: A Strategy for TEsting Reactive Systems

Eliane Martins
UNICAMP

eliane@ic.unicamp.br

Daniele C. Guimarães
UNICAMP/INPE

daniele@dss.inpe.br

Ana Maria Ambrosio
INPE

ana@dss.inpe.br

Abstract
This article reports our current work in defining a
specification-based testing strategy for reactive
systems, named STER. The strategy is aimed at
providing practitioners with a formal and
systematic method of testing, which may be easily
understood and applied in the industry. It is based
on risk analysis to help pinpoint the critical parts
of the system. Moreover, it guides testers to deal
with limited testing time and resources common
in industry context, without losing system quality.
The experiments with the strategy has been
supported by ATIFS [1], a test tool-kit of previous
research, for testing some space applications
developed at the National Institute for Space
Research (INPE). Extensions in the strategy have
been considered by aggregating fault injection-
based test cases to evaluate the system also in the
presence of faults.

Backgrounds
Reactive systems are often safety-critical and
must respond continually to stimuli from their
environment: computation and outputs are driven
by inputs received from the environment [2]. In
space applications, reactive systems are
predominant to control and monitor on board
equipment health, orbit and attitude positioning,
ground station equipment monitoring and to
autonomously operate satellites.
These systems are usually complex, concurrent,
distributed and the number of potential input
sequences that they must handle can be
considered as infinite. In spite of these
difficulties, reactive systems must be thoroughly
validated to assure that it complies the required
qualities. The cost of testing accounts for more
than 50% of development costs. The activities of
generating and selecting tests strongly contribute
to this overall system testing cost. An approach
for efficient test case generation, supported by
tools, is thus mandatory to assure quality,
specially for highly complex systems.
A set of test case generation methods have been
developed for several formal models such as

FSM, Petri Net, Statecharts, SDL, etc. However
these methods are not commonly adopted by the
industry yet. There are various reasons for that
(c.f. [2, 3]). One of them is the difficulty in the
use of formal methods for practitioners. Another
is that most methods require a complete,
consistent specification of the system, which is
hard to obtain in practice. The huge amount of test
cases that can be automatically generated is
another practical problem.
The strategy we propose aims at coping with these
problems. It is based on UML notations (which
has becoming popular among developers); it is
based on test case generation from a formal
specification, but not for the entire system. The
idea is to concentrate the test effort where it can
most effectively reduce risk. According to the
Pareto principle, 80% of all errors uncovered
during testing will likely be traceable to 20% of
all program modules [4]. Adopting a risk-based
analysis before generating the system test cases,
one may find the risky parts over the whole
system and then to thoroughly test these parts.
In the following we present some of the problems
addressed by STER, the approaches that inspired
STER, its steps and finally the ongoing work.

Addressed problems
When systematically testing a reactive system
based on its specification, in practice one has to
address a lot of issues [2, 3]. Some of them,
addressed by STER, are described in the
following.
One of the first issues is the use of formal
methods. Some formalisms being defined to
specify a reactive system are based on sound
mathematical theories that allow to formally
verify whether the specification has some desired
properties. However these formalisms are hardly
applicable to real complex systems. Also, formal
methods are still difficult to put into practice. To
cope with this issue, STER is based on various
artifacts generally produced during the Analysis
and Design phases, thus allowing the re-use of
many already existing models. Since UML

notations are mostly used in practice, these are the
ones considered in our strategy.
 Another difficulty with formal testing methods is
that most of them assume a relatively stable and
complete specification. This is often impossible in
practice. In many specifications only some
functions or aspects are (or can be) formally
specified. Besides, requirements change over
time: the desired end system is rarely clearly and
completely defined. STER allows users to
partition the system according to use cases, so
tests can be considered incrementally, firstly only
the use cases completely specified are tested.
Another problem that makes specification-based
testing unfeasible in practice is the state explosion
problem. This can occur: (i) due to the parameters
of the interactions of a system, which implies that
the system behavior depends on constraints on
these values, (ii) due to concurrency - the
behavior of the whole system is given by the
composition of the behavior of its components. To
cope up with this problem STER proposes a risk-
based testing approach: only the use cases
considered more critical are further detailed and
thoroughly tested. Test effort is thus concentrated
on those parts of the system whose failures can
heavily impact system behavior.
Existing test generation algorithms can generate a
huge number of test cases. A selection is thus
mandatory because of time and resource
constraints. The risk analysis also applies to
scenarios of a use case: test cases are generated
for the most critical scenarios of each use case
considered for testing. In addition, STER is an
incremental testing strategy: first, each critical use
case is tested in isolation. Then they are integrated
with other use cases for the testing the whole
system.

Related work
Some system testing approaches have inspired the
strategy adopted in STER: TOTEM [5] - based on
various UML artifacts, from which we adopted
the use case sequence for testing the whole
system; SCENT [6] - based on scenarios, with
which a state model is obtained; ETACS [7] - use
risk analysis; and the strategy in [8] – define a test
strategy based on the user profile.

The STER strategy
The STER steps are as follows:
1. Generate the use cases describing the system.
2. Define the risk (weight) of each use case.
3. Derive scenarios from the most risky use

cases.

4. Define the risk of each scenario for the
selected use cases.

5. Derive a sequence diagram to represent the
scenarios.

6. Derive a finite state machine (FSM)
representing the most risky scenarios for each
selected use case.

7. Generate a test sequence from the FSM, using
a tool developed for that purpose. The test
cases will be used to test each selected
(critical) use case in isolation.

8. Derive test cases for the system, by combining
the test cases obtained for the individual
critical use cases. Sequences are derived from
Activity Diagrams representing the flow of use
case executions for each actor, as in [5].

Ongoing works
Preliminary results in an artificial case study has
shown the usefulness of the strategy. Moreover, it
is being used for testing a satellite operation
system developed at INPE. For space application
compliance, STER is being extended with guides
for fault-injection based test cases definition. The
fault injection purposes are: (i) to test specified
exception outputs as another means to avoid state
space explosion; and (ii) to test the system
behavior under unspecified situations.

References
[1] in site: http:www.inpe.br/atifs
[2] L.J. Jagadeesan, A. Porter, C. Puchol, J. C.
Ramming, L. G. Votta, “Specification-based Testing of
Reactive Software: A Case Study in Technology
Transfer”. Proc. of the 19th International Conference on
SE, May,1997.
[3] R. Lai, W. Leung, “Industrial and academic protocol
testing: the gap and the means of convergence”.
Computer Networks and ISDN Systems, 27, pp537-
547, 1995.
[4] Pressman, R. S., “Software Engineering – A
practitioner’s Approach”. McGraw-Hill, 5ª ed.,
2001.
[5] L. Briand, Y. Labiche, “A UML-Based Approach to
System Testing”, Technical Report SCE-01-01, Version
4, Carleton University, 2002.
[6] J. Ryser, M. Glinz, “SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for
System Test”. Technical Report 2000/03, Institut für
Informatik, Universität Zürich.
[7] L. M. Volpi, “Uma estratégia de teste de software
para Ambiente Cliente-Servidor”. Dissertação de
Mestrado.Universidade Federal do Paraná, 2001.
[8] J. McGregor, M. Major, “Selecting Test Cases
Based on User Priorities”, 2000.

