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[1] A coronal mass ejection (CME) associated with an
X17 solar flare reached Earth on October 29, 2003, causing
an �11% decrease in the intensity of high-energy Galactic
cosmic rays recorded by muon detectors. The CME also
produced a strong enhancement of the cosmic ray
directional anisotropy. Based upon a simple inclined
cylinder model, we use the anisotropy data to derive for
the first time the three-dimensional geometry of the cosmic
ray depleted region formed behind the shock in this event.
We also compare the geometry derived from cosmic rays
with that derived from in situ interplanetary magnetic field
(IMF) observations using a Magnetic Flux Rope
model. INDEX TERMS: 2104 Interplanetary Physics: Cosmic

rays; 2111 Interplanetary Physics: Ejecta, driver gases, and

magnetic clouds; 2134 Interplanetary Physics: Interplanetary

magnetic fields. Citation: Kuwabara, T., et al. (2004), Geometry

of an interplanetary CME on October 29, 2003 deduced from

cosmic rays, Geophys. Res. Lett., 31, L19803, doi:10.1029/

2004GL020803.

1. Introduction

[2] When a coronal mass ejection (CME) accompanied
by a strong shock travels through interplanetary space, it
often forms a depleted region of Galactic cosmic rays
behind the shock and within the CME. When Earth enters
the depleted region, ground-based cosmic ray detectors
record a Forbush Decrease [Cane, 2000], often accompa-
nied by strong enhancements of the cosmic ray anisotropy.
By analyzing data recorded by a network of high latitude
neutron monitors, Bieber and Evenson [1998] demonstrated
that the temporal evolution of the cosmic rays is closely
linked to magnetic properties of the CME and provides
information on the structure of the CME as it approaches

and passes Earth. Munakata et al. [2004] confirmed this
with observations by a network of muon detectors, which
respond to higher energy primary cosmic rays (�60 GeV)
than the neutron monitors (�10 GeV). In the present paper,
we analyze muon data using an inclined cylinder to model
the geometry of the cosmic ray depleted region. The
cylinder is meant to represent a local section of a large-
scale loop structure draped from the sun by the CME [Ihara
et al., 2003]. Preliminary results from earlier events can be
found elsewhere [Munakata et al., 2003]; here, we apply an
improved analysis method to the extreme event of October
29, 2003.

2. Observations

[3] Data recorded by three multi-directional muon detec-
tors at Nagoya (Japan), Hobart (Australia), and São
Martinho (Brazil) are analyzed here. For detailed properties
of the detectors, we refer the reader to Munakata et al.
[2000, 2001]. We fit the function Ii,j

fit(t) given by

I
fit
i;j tð Þ ¼ I tð Þc00i;j þ xGEOx tð Þ c11i;j coswti � s11i;j sinwti

� �

þ xGEOy tð Þ s11i;j coswti þ c11i;j sinwti
� �

þ xGEOz tð Þc01i;j ð1Þ

to the pressure-corrected hourly count rates, Ii,j
obs(t), of

cosmic ray secondary muons observed at universal time t in
the j-th directional channel in the i-th muon detector. This
yields for each hour the best fit density of primary cosmic
rays (I, the omni-directional component of intensity) as well
as the three components of the streaming vector, or first
order anisotropy, in the geographic (GEO) coordinate
system (xx

GEO, xy
GEO, xz

GEO). In equation (1), ti is the local
time in hours at the i-th station, w is 2p

24
, and c0i,j

0 , c1i,j
1 ,

s1i,j
1 and c1i,j

0 are so-called ‘‘coupling coefficients’’ which
relate the observed muon intensity to the primary cosmic
ray intensity in free space [Fujimoto et al., 1984]. We then
transform the streaming vector to the geocentric solar
ecliptic (GSE) coordinate system and subtract streaming due
to solar wind convection and due to Earth’s 30 km/s motion
about the Sun, yielding the anisotropy in the solar wind
frame X

w. In these Compton-Getting subtractions, we
assume the cosmic ray energy (E) spectrum varies as
E�2.7, and for solar wind speed we employ the hourly mean
bulk speed of alpha particles, as the proton bulk speed is
unavailable for much of this event (http://umtof.umd.edu/
pm/speeds_302-304.gif). In the following analysis, we lag
the ACE wind speed and magnetic field data by 20 minutes
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as a rough correction for the solar wind transit time between
ACE and Earth.
[4] Following Bieber and Evenson [1998], we assume

that enhanced anisotropy perpendicular to the IMF (B) is
predominantly due to B � rN drift flux driven by a
gradient of cosmic ray density (N). Based upon this
assumption, the fractional perpendicular density gradient
is given by

g? tð Þ ¼ RL

r?N

N
¼ �b tð Þ � Xw tð Þ; ð2Þ

where RL is the effective particle Larmor radius, and b(t) is a
unit vector in the direction of B.
[5] Figure 1 shows the cosmic ray event on October 29,

2003 observed by the muon detector network. Figure 1a

shows that the cosmic ray density I decreased by about 11%
following shock arrival at the time of the SSC (vertical line).
This is one of the largest decreases ever recorded by muon
detectors. There is also a strong enhancement of the
anisotropy as shown in Figures 1b and 1c. Figure 1d shows
that the GSE x-component (g?x) of the perpendicular
gradient turns systematically from negative to positive,
consistent with a cosmic ray depleted region approaching
and then receding from Earth. On the other hand, the GSE
z-component (g?z) remains negative, indicating the
center of the depleted region passed north of Earth. The
GSE y-component (g?y) turns systematically from positive
to negative. These features of a CME passing Earth were
first demonstrated from a high latitude neutron monitor
network [Bieber and Evenson, 1998]. In the remainder of
this paper, we develop a technique for analyzing cosmic ray
data using a cylinder model for the CME, and we apply it to
the extreme event on October 29, 2003.

3. Analysis and Results

3.1. Cylinder Model for Cosmic Rays

[6] We assume an axisymmetric spatial distribution for the
cosmic ray density with a minimum located along the axis of
a straight ‘‘cylinder,’’ which is an idealized representation of
a local section of a CME loop. In this model, the negative
density gradient (�g?(t)) observed at Earth is perpendicular
to the cylinder axis and points toward the Closest Axial
Point (CAP) on the cylinder axis. We assume a simple
Gaussian function for the model density distribution,

N rð Þ ¼ N0 þ n0 exp � r2

2l2

� �
; ð3Þ

where N0 is the background density, n0(<0) is the density
depression on the cylinder axis, r is distance between the
CAP and Earth, and l is a parameter representing the
cylinder thickness. The fractional density depression I(r) at
r is given by

I rð Þ ¼ N rð Þ � N0

N0

¼ I0 exp � r2

2l2

� �
; ð4Þ

with I0 = n0
N0
(<0). The fractional density gradient vector

(g?(t)), which can be obtained from the anisotropy
measurement at a position (r), is given by

g? rð Þ ¼ RL

1

N

dN

dr
¼ RL

r

l2

I0 exp � r2

2l2

� �

1þ I0 exp � r2

2l2

� �


 RL

r

l2
I0 exp � r2

2l2

� �
; ð5Þ

where we used jI0j = n0
N0

��� ��� � 1 to simplify the expression.
[7] As illustrated in Figure 2, we can determine the

position vector of the CAP as viewed from Earth, PE(t),
by solving equation (5) for r using the derived g?(t) for
each hour. The position vector is then given by

PE tð Þ ¼ �r tð Þ ¼ Vapp t � t0ð Þ þ P0; ð6Þ

where Vapp is the apparent velocity of the CAP, P0 is its
impact parameter, and t0 is time of closest approach.

Figure 1. Cosmic ray event on October 29, 2003 observed
by the muon detector network. Panels display as a function
of time (day of year 2003) (a) the best fit density I (circles),
(b) north-south anisotropy xz (circles), (c) the component
anisotropy in the ecliptic plane xx, xy in a gray-scale format,
and three components of the perpendicular density gradient
(d) g?x, (e) g?y, and (f) g?z in GSE coordinates (circles). In
Figure 1c, each vertical stripe represents 1 hour of data, with
lighter and darker colors respectively denoting higher and
lower cosmic ray intensity. Saturation occurs at +1.5%
(white) and �1.5% (black). In Figures 1b and 1c, triangles
show respectively the GSE latitude and longitude of the
hourly mean IMF. The time of a Storm Sudden Commence-
ment (SSC) is indicated by the vertical line. Closed circles
in any panel denote the time interval used for the cylinder
analysis, and the density and gradient vector reproduced by
the best fit cylinder model are shown by dotted curves.
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[8] In this paper, we assume the cylinder moves with
constant velocity equal to the solar wind velocity Vsw

averaged over the analyzed time period. The CAP velocity
observed in the solar wind frame, Vapp

axis, is then

Vaxis
app ¼ Vapp � Vsw: ð7Þ

This velocity is aligned with the cylinder axis; hence it
defines the orientation of the cylinder.

3.2. Best Fitting to the Data

[9] In the actual best fitting analysis, we use equations (4),
(5), and (6) rewritten in terms of scale quantities normalized
by l, as

I tð Þ ¼ I0 exp � 1

2
rE tð Þ2

� �
; ð8Þ

g? tð Þ ¼ �rLRE tð ÞI0 exp � 1

2
rE tð Þ2

� �
; ð9Þ

RE tð Þ ¼ vapp t � t0ð Þ þ R0; ð10Þ

where

rL ¼ RL

l
; RE tð Þ ¼ PE tð Þ

l
; vapp ¼ Vapp

l
; R0 ¼

P0

l
: ð11Þ

[10] We first choose a pair of parameters I0 and rL and
solve equation (9) for RE(t) every hour. We then calculate
vapp, R0 and t0 by fitting a straight line to each GSE

component of RE(t) plotted as a function of time t. With
these parameters known, we compute the expected density
Iexp(t) and gradient vector g?

exp(t), and we determine the
residual S defined by

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4N

XN
i¼1

Iobs tið Þ � Iexp tið Þj j2 þ gobs? tið Þ � g
exp
? tið Þ

�� ��2n o
;

vuut

ð12Þ

where N is the total number of hours analyzed. We repeat
these calculations changing I0 and rL, and we determine the
best fit pair that minimizes S.
[11] The magnitude of Vapp can now be calculated from

Vapp

�� �� ¼ Vsw

�� �� cosQ; ð13Þ

where Q is the angle between Vsw and vapp for the best fit
pair. Using rL and R0 corresponding to the best fit pair, l
and the other parameters are then determined as follows,

l ¼
Vapp

�� ��
vapp
�� �� ; RL ¼ rLl; Vapp ¼ vappl; P0 ¼ R0l: ð14Þ

3.3. Result

[12] The best fit I exp(t) and g?
exp(t) are shown by the

dotted curves in Figures 1a and 1d–1f. The best fit
calculations are performed over a time interval Dt = 6 hours
from 13:00–19:00 UT on 29 October 2003, shown by solid
circles. The temporal evolution both of the density and the
gradient are well reproduced even with such a simple
model. The best fit parameters are given in Table 1. This
analysis suggests that the cosmic ray cylinder in this event
was inclined at latitude q = 3� from the ecliptic and at GSE
longitude f = 27�, as illustrated in Figure 3 (left). The scale
size l of the cylinder is �0.1 AU, which corresponds to a
FWHM of 0.28 AU. Closest approach was at 16:27 UT, at
which time the CAP passed �0.035 AU north of Earth.

4. Discussion and Conclusion

[13] We have derived for the first time the 3D geometry
of a cosmic ray depleted region formed behind a strong
interplanetary shock, which arrived at Earth on 29 October
2003, by using the cosmic ray intensity observed with a
network of muon detectors. This event caused a �11%
decrease in the omni-directional intensity of cosmic rays.
By modeling the cosmic ray depleted region as a cylinder,
we demonstrated that the observed systematic variation in
the cosmic ray anisotropy is consistent with an inclined
cylinder of thickness (FWHM) 0.28 AU approaching and
then receding from Earth at the solar wind velocity of

Figure 2. Geometry of an inclined cylinder passing Earth.
The cylinder convects with the solar wind velocity Vsw, but
the closest axial point (CAP) to Earth has a different
velocity Vapp. The position vector of the CAP is PE(t), and
P0 is the impact parameter. Although the cylinder is shown
with a sharp edge at radius l, the model actually assumes a
Gaussian shaped density suppression centered on the
cylinder axis; see equation (4).

Table 1. Best Fit Parameters for the Cylinder Analysis of October 29, 2003a

Dt [hour] Vsw [km/s] B [nT] I0 [%] l [AU] Vapp [km/s] P0 [AU] t0 [hh:mm] RL [AU] S [%] q [�] f [�]

�288.3 �0.001
6 1401 44 �11.02 0.119 561.7 �0.005 16:27 0.056 0.342 3 27

73.4 0.036
aSee text for definitions. For vectors Vapp and P0, the 3 GSE components (x, y, z) are given.
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�1400 km/s. The center of the cylinder approached closest
to Earth at 16:27 UT on 29 October, at which time it was
�0.035 AU north of Earth.
[14] The best fit Larmor radius RL in Table 1 is 0.056 AU.

Given the observed IMF magnitude of 44 nT averaged over
the analysis period (B), this corresponds to an effective
rigidity of primary cosmic rays of 112 GV. This value is
within the 60–120 GV range of median primary rigidities
covered by 39 directional channels in our present network
[Munakata et al., 2004]. Noting that no information about
the detector energy response was used in the cylinder
analysis, the consistency of the inferred effective rigidity
with the detector median rigidities supports the validity of
the method.
[15] We also performed a best fit analysis of the

Magnetic-Flux-Rope (MFR) model [Marubashi, 2000] to
IMF data observed by ACE. Shown in Figure 4 are
64 second data of the IMF (a) magnitude, (b) latitude and
(c) longitude together with the (d) solar wind velocity
(helium bulk speed). The MFR model describes the data
reasonably well, as indicated by good agreement between
the data and solid curves. The 3-D geometry of the best fit
MFR is depicted in Figure 3 (right). The inclinations of the
MFR are 46� latitude and 54� longitude, which are in the
same sense but somewhat larger than those of the cosmic
ray cylinder (3� and 27�). One reason for a difference is that
the MFR analysis interval (delimited by solid vertical lines
in Figure 4) is 2.5 times longer than that of the cosmic ray
cylinder (dotted vertical lines). Extending the period of the
cylinder analysis to later hours is problematic with the
present simple model, however, because the fast decrease
and slower recovery of the cosmic ray density cannot be
modeled by a symmetric Gaussian. Keeping this restriction
in mind, we extended the cylinder interval by two hours
both earlier and later and obtained inclinations of
13� latitude and 56� longitude, closer to those of the MFR
analysis, though the residual S increased slightly to 0.457
from 0.342 in Table 1. A second reason for a difference is
that ACE samples the IMF only along a line determined by
the solar wind flow, while the cosmic rays sample the
magnetic field within a large region �0.1 AU in diameter
(two Larmor radii).
[16] For the future, it is important to develop more

realistic (asymmetric) models of the cosmic ray depleted

region. We will also work to enlarge the muon observing
network in order to obtain a more complete picture of the
cosmic ray angular distribution.
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