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Abstract Artificial Neural network (ANN) is a new approach for data assimilation process. The performance
of two feedforward (multilayer perceptron and radial basis function), and two recurrent (Elman and Jordan)
ANNs is analized. The Lorenz system under chaotic regime is used as a test problem. These four NNs were
trainned for emulating a Kalman filter using cross validation scheme. Multilayer perceptron and Elman
ANNs show better results. The results obtained encouraging the application of the ANNs as an assimilation
tecnique.

Resumo Redes nurais artificiais é uma nova abordagem para assimilação de dados. É analisado o desem-
penho de duas redes feedforward (perceptron de múltiplas camadas e função de base radial) e duas redes
recorrentes (Elman e Jordan). O sistema de Lorenz sob regime caótico é usado como um problema teste. As
redes foram treinadas para emular um filtro de Kalman, usando a técnica de realimentação com validação
cruzada. O perceptron de múltiplas camadas e a rede de Elman foram as que obtiveram os melhores desem-
penhos. Os resultados encorajam a aplicação de redes neurais como uma técnica assimilação.
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INTRODUCTION

After 1950 the numerical weather prediction (NWP) became an operational procedure. Es-
sentially, NWP consists on the time integration of the Navier-Stokes equation using numerical
procedures. Therefore, after some time-steps, there is a desagreement between the output from the
numerical prediction and the real atmosphere, in other words, the forecasting error has a direct re-
lationship with the increasing of the integration time. NWP is an initial value problem, this implys
that a better representation for the inital condition will produce a better prediction. The problem
for estimating the initial condition is so complex and important that it becomes a science called
Data Assimilation (Kalnay, 2003).

The insertion of the noise obvervational data into an inaccurate computer model does not
allow a good prediction (see Figure 1). It is necessary to apply some data assimilation technique.

Many methods have been developed for data assimilation (Dayley, 1991). They have differ-
ent strategies to combine the forecasting (background) and observations. From mathematical point
of view, the assimilatin process can be represented by

xa = xf + W p
[
yo −H(xf)

]
(1)

where xa is the value of the analysis; xf is the forecasting (from the mathematical model); W
is the weighting matrix, generally computed from the covariance matrix of the prediction errors
from forecasting and observation; yo denotes the observation; H represents the observation sys-
tem; {yo −H(xf)} is the inovation; and p[.] is a discrepancy function.
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José dos Campos/SP - Brasil, Fone: 12-3945-6547, E-mail: [fabricio, haroldo]@lac.inpe.br



The use of ANN for data assimilation is a very recent issue. ANNs were suggested as a pos-
sible technique for data assimilation by Hsieh and Tang (1998), but the first implementation of the
ANN as a new approach for data assimilation was employed by Nowosad et al. (2000a) (see also
Nowosad et al. (2000b), Vijaykumar et al. (2002), Campos Velho et al. (2002)). The ANN has
also be used in the works of Liaqat et al. (2003) and Tang-Hsieh (2001) for data assimilation. The
technique developed by Nowosad et al. (2000) is quite different from the latter two works, where
the ANN is used as representer of an unknown equation in the mathematical system equations of
the model.
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Figure 1: Shock in the numerical model after data insertion, without assimilation technique.

Differently from previous works using ANN for data assimilation, this paper deals with re-
current ANN. In addition, the cross validation is used as learning process. The Lorenz system
under chaotic dynamics is applied as test model for assimilating noise data. Four ANNs are con-
sidered: Multi-Layer Perceptron (MLP), Radial Base Function (RBF), Elman Neural Network
(E-NN), and Jordan Neural Network (J-NN). The E-NN and J-NN are known as recurrent or time-
delay ANNs.

METHODOLOGY

This Section presents the model used for testing the assimilation schemes, a brief overview
on Kalman filter, and a description of the ANNs employed in this work.

Testing Model: Lorenz System

Lorenz (1963) was looking for the periodic solutions of the Saltzman’s model, considering a
spectral Fourier decomposition and taking into account only low order terms. Lorenz obtained the
following system of non-linear coupled ordinary differential equations

dX/dτ = −σ (X − Y ) (2)

dY/dτ = r X − Y −XZ (3)

dZ/dτ = XY − bZ (4)

where τ ≡ π2 H−2 (1 + a2) κ t is the non-dimensional time, being H , a, κ and t respectively the
layer height, thermal conductivity, wave number (diameter of the Rayleigh-Bérnard cell), and time;



σ ≡ κ−1ν is the Prandtl number (ν is the kinematic vicosity); b ≡ 4(1 + a2)−1. The parameter
r = R/Rc ∝ ∆T is the Rayleigh number (T is the temperature), and Rc is the critical Rayleigh
number.

Kalman Filter

Starting from a prediction model (subscripts n denotes discrete time-step, and superscripts f
represents the forecasting value) and an observation system:

wf
n+1 = Fnw

f
n + µn (5)

zfn = Hnw
f
n + νn (6)

where Ff
n is our mathematical model, µn is the stochatic forcing (modeling noise error). The

observation system is modeled by matrix Hn, and νn is the noise associated to the observation.
The typical gaussianity, zero-mean and ortogonality hypotheses for the noises are adopted. The
state vector is defined as wn+1 = [Xn+1, Yn+1, Zn+1]

T , and it is estimated through the recursion

wa
n+1 = (I−Gn+1Hn+1)Fnw

a
n + Gn+1z

f
n+1 (7)

where wa
n+1 is the analysis value, Gn is the Kalman gain, computed from the minimization of the

estimation error variance Jn+1 (Jaswinski, 1970)

Jn+1 = E{(wa
n+1 −wf

n+1)T (wa
n+1 −wf

n+1)} (8)

being E{.} the expected value. The algorithm of the Linear Kalman Filter (LKF) is shown in
figure 2, where Qn is the covariance of µn and Rn is the covariance of νn.

The assimilation is done through the sampling:

rn+1 ≡ zn+1 − zfn+1 = zn+1 −Hnw
f
n+1 . (9)

Artificial Neural Networks

An artificial neural network (ANN) is an arrangement of units characterized by:

• a large number of very simple neuron-like processing units;

• a large number of weighted connections between the units, where the knowledge of a net-
work is stored;

• highly parallel, distributed control.

The processing element (unit) in an ANN is a linear combiner with multiple weighted in-
puts, followed by an activation function. There are several different architectures of ANN’s, most
of which directly depend on the learning strategy adopted. Two distinct phases can be devised
while using an ANN: the training phase (learning process) and the run phase (activation of the net-
work). The training phase consists of adjusting the weights for the best performance of the network
in establishing the mapping of many input/output vector pairs. Once trained, the weights are fixed
and the network can be presented to new inputs for which it calculates the corresponding outputs,
based on what it has learned. The back-propagation algorithm is used as the learning process for
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Figure 2: Schematic diagram of the linear Kalman filter.

all ANN topologies studied.

The k-th neuron can be described by the two coupled equations

uk =
m∑

j=1

wkj xj , (10)

yk = ϕ(uk + bk) (11)

where x1, ..., xm are the inputs; wk1, ..., wkm are the conection weights for the neuron-k, uk is the
linear output of the linear combinação combination amoung weighted inputs, bk is the bias; ϕ(.) is
the activations function, and yk is the neuron output.

Multilayer perceptrons with backpropagation learning algorithm, commonly referred to as
backpropagation neural networks are feedforward networks composed of an input layer, an output
layer, and a number of hidden layers, whose aim is to extract high order statistics from the input
data (Haykin, 2001). Figure 3(a) and fig:ANN-1(b1) depicts a backpropagation neural network,
one hidden layer, and the activation function.

Radial basis function networks are feedforward networks with only one hidden layer. They
have been developed for data interpolation in multidimensional space. RBF nets can also learn
arbitrary mappings. The primary difference between a backpropagation with one hidden layer and
an RBF network is in the hidden layer units. RBF hidden layer units have a receptive field, which
has a center, that is, a particular input value at which they have a maximal output. Their output
tails off as the input moves away from this point. The most used function in an RBF network is a
Gaussian distribution – Figure 3(b2).

Two recurrents ANNs are also investigated, Elman and Jordan NNs (Braga et al., 2000).
Beyond of the standard units, such as input/output and hidden layers, recurrent NNs present the
context units. Input and output units are in contact with the external environment, while the context
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Figure 3: (a) Outline for the neural network; activation functions (b1) for the MLP-NN: tanh1(x);
(b2) for the RBF-NN: Gaussian distribution.

units are not. Input units are just buffer units, they do not change the inputs. The hidden layers
present ativation functions, alterning the inputs and producing the outputs. Context units introduce
a memory in the system, keeping the previous outputs as additional inputs (recurrency).

For the E-NN, the recuurency is done connecting the hidden layer with the input layer – see
Figure 4(c). Similar topology is employed to the J-NN, Figure 4(d), but the output values are used
in the recurrency.
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Figure 4: Outline for recurrent NNs: (a) Elman; (b) Jordan.

NUMERICAL EXPERIMENTS

Our numerical experiments are performed using the following features for Kalman filter:

Qn = 0.1 I ; Rn = 2 I ; Pf
0 =

{
10 (wf

0)2
i for i = j

0 for i 6= j
. (12)

The Lorenz system was integrated using a first order predictor-corrector scheme, with ∆t =
10−3. The data insertion is done at each 12 time-steps. For training data set, 2000 data are consid-
ered, and 333 data are used for cross validation. After the training, the model is integrated for 106

time-steps.



Table 1: Neural network parameters: one hidden layer.

MLP RBF E-NN J-NN
neurons 2 2 2 2
αh 0.6 0.0 0.3 0.
αX 0.6 0.0 0.9 0.
αY 0.6 0.0 0.9 0.
αZ 0.6 0.0 0.8 0.
ηh 0.001 0.001 0.01 0.1
ηX 0.001 0.001 0.01 0.01
ηY 0.001 0.001 0.01 0.1
ηZ 0.001 0.001 0.01 0.01

In order to test different architectures of ANNs, for emulating a Kalman filter in data assim-
ilation, one uses momentum constant for hidden layer αh and αn (n = X, Y, Z) for the output
layer. Similar feature is used for learning rates: ηh for hidden layer, and ηn (n = X, Y, Z) for the
output layer. The numerical values for these parameters are shown in Table 1.

Neural networks with two hidden layers were also considered. The parameters employed for
this topology is presented in Table 2.

During the learning process, the cost function (the square difference between the ANN out-
put and the target data) is decreasing, but this does mean that the ANN will have an effective
generalization. On the other hand, the minimization can fall in a local minimum of the error sur-
face. Appropriated momemtum constant and learning ratio can avoid these local minima, and the
cross validation is an alternative to choise a better set of the connection weights implying in a
better generalization.

Cross validation consists to split the target data set into two sub-sets, one for training and an-
other one for validation. For each iteration, the connection weights are tested with the second data
set to evaluate the ANN skill for generalization. In our experiments, the number of iterations was
fixed at 1000, and the cross validation was used to keep the best weight set for the generalization.

The training, cross validation, and estimation errors are computed as following (n = X, Y, Z
and average):

EMQn =
1

2000

2000∑

i=1

1

2

(
XKF
i −XNN

i

)2
; (13)

EAn =
1

333

333∑

k=1

√
(XKF

k −XNN
k )

2
; (14)

EEn =
1

105

105∑

k=1

√(
XObs
k −XNN

k

)2
. (15)

Results show below are obtained with only one hidden layer. However, some experiments
were also performed considering two hidden layers for MLP, FBR, and Jordan, looking for a bet-
ter performance. However, the results are pretty similar to those obtained with one hidden layer.



Table 2: Neural network parameters: two hidden layers.

MLP RBF J-NN
(L1, L2) (L1, L2) (L1, L2)

neurons (2, 6) (11, 2) (6, 2)
αh 0.5 0.1 0.0
αX 0.5 0.1 0.0
αY 0.5 0.0 0.0
αZ 0.5 0.1 0.0
ηh 0.001 0.1 0.01
ηX 0.001 0.1 0.001
ηY 0.1 0.1 0.01
ηZ 0.001 0.1 0.01

Therefore, results with two hidden layers will not be commented.

Assimilation: Multi-layer Perceptron (MLP)

Figures 5(a) shows the training error curves obtained during the learning phase, and 5(b)
displays the generalization error. The mean error ([error-X + error-Y + error-Z]/3) is also shown.
After the choice of the best weight set, the Lorenz system is integrated considering data assimila-
tion at each 12 time-steps.
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Figure 5: Error for the Lorenz system: (a) during the training phase; (b) for the cross validation.

Figures 6(a)-6(c) depicted the last 103 time-steps of the integration, where the data assimila-
tion is performed by the MLP with one hidden layer. In these figures, the solid line represents the
observation. Clearly, the MLP-NN is effective to carry out the assimilation.

Two neurons are used for MLP-NN in the hidden layer, and the learning ratio are described
in Table 1, reaching a minimum average error at 3.89 for the second epoch. The learning error
dramatically decreases for the first two iterations, and it continues decreasing slowing for the rest
of iteration process - see Figure 5(a). This shows how the cross validation works, selecting the best
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Figure 6: Data assimilation for the Lorenz system using MLP-NN: (a) component-X ,
(b) component-Y , (c) component-Z.



weight set for activation (or generalization) of the ANN.

Assimilation: Radial Base Function (RBF)

The same experiment applied to the LMP-NN is carried out for the RBF-NN, with one hid-
den layer. The iteration errors are shown in Figures 7(a)-(b) and 8(a)-(c). The best architecture of
this NN is obtained with two neurons in the hidden layer, using learning ratio and momentum con-
stant listed in Table 1. The smallest activation error was obtained at the first epoch. The training
error is very small at second and twelve epochs, but the estimation error for the cross validation
data set grows exponentially, except for the component-Y .
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Figure 7: Error for the Lorenz system: (a) during the training phase; (b) for the cross validation.

Figures 8(a)–8(c) show that the RBF also presents a good performance, with EEX = 3.477,
EEY = 5.350, EEZ = 3.962 and EEaverage = 4.263 for components X , Y , Z, and the average
error, respectively.

Assimilation: Recurrents NNs

Here, the results for Elman NN (recurrency from the hidden layer to input layer) and Jordan
NN (recurrency from the output to input). The idea to investigate the use of recurrent NNs is to
verify if the imbedding a memory in the NN could improve the assimilation for a longer period of
the time integration.

Figures 9(a)–9(b) plot the error computed from the training data set for the E-NN. In the Fig-
ures 11(a)–11(c) the last 1000 time-steps of the whole integration (with 106 time-steps) is shown
for this NN.

Two neurons are used in the hidden layer, with learning ratio and momentum constant as
given in Table 1. The average error EEaverage = 3.83 is reached at the second weight set from the
training set. From Figure 9(a), one can be noted that the training error decreases abruptly after the
second epoch.

The E-NN also produces a good assimilation, as seen in Figures 11(a)–11(c), givingEEX =
4.13, EEY = 3.63, EEZ = 3.74 and EEaverage = 3.84 for components X , Y , Z, and the average
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Figure 8: Data assimilation for the Lorenz system using RBF-NN: (a) component-X ,
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Figure 9: Error for the Lorenz system: (a) during the training phase; (b) for the cross validation.

error, respectively.

The assimilation with J-NN is efficient too, and there is no big difference related to other
NNs – see Figures 12(a)–12(c). The errors for the X , Y , Z, and the average are EEX = 3.95,
EEY = 4, 99, EEZ = 4.62, EEaverage = 4.52. Figures 10(a)–10(b) show that the training errors
decrease fast for the first epochs, while cross validation errors increase. For this NN, the best an-
swer from the J-NN is obtained at the first epoch.

CONCLUSIONS

In this work the technique of the ANNs was tested for application to the data assimilation in
chaotic dynamics. The efficiency of the recurrent NNs (Elman and Jordan), was compared with
the feed-forward NNs (multi-layer perceptron and radial base function). These ANNs were trained
using cross validation scheme. The learning with cross validation allows a complete knowledge of
the error surface. From the knowledge of the authors, this is the first time that cross validation was
employed in this application.

Neural networks are a nice alernative for data assimilation, because, after the training phase,

2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or

time−step

Mean Error
Error X
Error Y
Error Z

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

E
rr

or

time−step

Mean Error
Error X
Error Y
Error Z

(a) (b)

Figure 10: Error for the Lorenz system: (a) during the training phase; (b) for the cross validation.
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Figure 11: Data assimilation for the Lorenz system using E-NN: (a) component-X , (b) component-
Y , (c) component-Z.
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the ANNs present a lower computational complexity than the Kalman filter and the variational
approach. There are also other additional advantages, such as: NNs are intrinsicly parallel proce-
dures, and a hardware implementation (neuro-computers) is also possible.

All NNs employed were effetive for data assimilation. It was not noted any improvement
considering the recurrent NNs used, related to the two feed-forward NNs employed. The cross
correlation is a good strategy to choise the best weight set. The best weight set means that we are
not only looking for the weight set that learn from the patterns, but also the NN that gives a best
estimation for a data out from the training set.
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