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Abstract

Pollutant dispersion models in the atmosphere can 

be described by Eulerian or Lagrangian approaches. 
Lagragian models belong to the class of Monte Carlo 

methods. This type of method is very flexible, solving 

more complex problems, however this computational 
cost is greater than Eulerian models, as it is well 

established in the atmospheric pollutant and nuclear 

engineering communities. A parallel version of the 
Lagrangian particle model – LAMBDA – is developed 

using the MPI message passing communication library. 
Performance tests were executed in a distributed 

memory parallel machine, a multicomputer based on 

IA-32 architecture.  Portions of the pollutant in the air 
are considered particles emitted from a pollutant 

source, evolving under stochastic forcing. This yields 

independent evolution equations for each particle of the 
model, that can be executed by a different processor in 

a parallel implementation. Speed-up results show that 

the parallel implementation is suitable for the used 
architecture.

1. Introduction 

The pollutant dispersion in the atmosphere is a topic 

with high interest nowadays. However, inside of the 

Planetary Boundary Layer (PBL) the turbulence is a 

permanent feature [3, 26], becoming this problem in a 

very hard. The turbulence in the PBL is a complex 

process, depending on the thermodynamic state of the 

atmosphere. Therefore, the PBL can be characterized as 

a Convective Boundary Layer, where thermal processes 

govern the turbulence; Neutral Boundary Layer, when 

the turbulence is maintained by mechanical production 

only; or a Stable Boundary Layer, occurring in 

situations in which the heat flux is coming from the 

atmosphere to the Earth (removing energy from 

turbulent flow) and the mechanical turbulent 

production is present. Different types of PBL implies in 

a different parameterizations for the atmospheric 

turbulence. In addition, complex topography is an 

additional difficulty in real world applications. The 

Lagrangian dispersion models are good alternatives 

dealing on complex terrain. However, these models are 

computinally intensive. 

Models for air monitoring are not only important for 

describing the pollutant impact over urban or rural 

areas, or for a urban planning consideration (these are 

examples where the forward problem is important 

considering several scenarios), but other issues are also 

relevant, such as the  pollutant source strength 

estimation, CO2 diurnal cycle, and total ozone in the 

atmosphere. The last three issues are examples of 

inverse problems in atmospheric pollution. Inverse 

problems are usually solved by an implicit technique,

where the inverse problem is formulated as a 

constrained nonlinear optimization problem: the 

forward problem is iteratively solved for successive 

approximations of the unknown parameters. The 

associated forward problem is the solution of the 

dispersion model. In a typical inversion, thousands of 

iterations may be required and, therefore, the choice of 

an algorithm that is suitable for parallelization has an 

important role. 

2. Description of the LAMBDA Model 

The Lagrangian particle model LAMBDA [10] was 

developed to study the transport process and pollutants 
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diffusion, starting from the Brownian random walk

modeling. This model is based on a three-dimensional

form of the Langevin equation for the random velocity

[28]. The velocity and the displacement of each particle 

are given by the following equations [24]:

(1a))(),,(),, tdWtbdttadu jijii uxu(x

and

, (1b)dtdx )( uU

where , and 3,2,1, ji x  is the displacement vector, U

is the mean wind velocity vector, u  is the Lagrangian

velocity vector, a  is a deterministic term and

is a stochastic term and the quantity

 is the incremental Wiener process. 
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Thomson considered the Fokker-Planck equation

[24] as Eulerian cornplement of the Langevin equation

to obtain the deterministic coefficient . The 

stationary Fokker-Planck equation is given as:
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where  is the non-conditional probability density

function (PDF) of the Eulerian velocity fluctuations and 

the other symbols have the same definitions as in

equations (1a, 1b). The deterministic coefficient

 is obtained from:
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subject to the condition

 when u .                                 (3c) 0i

While in the two horizontal directions the  is 

considered to be Gaussian, in the vertical direction the

PDF is assumed to be non-Gaussian (to deal with non-

uniform turbulent conditions and/or convection). The

non-Gaussian PDF more used is the bi-Gaussian one, 

truncated to the third order  [2].

EP

The coefficient  is obtained from the

following Lagrangian structure function (the ensemble

average of the square of the change in Lagrangian

velocity in the time interval ):
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For the inertial subrange ( , where )LK t K  is 

the Kolmogorov time scale and  is the Lagrangian

decorrelation time scale, the structure function,

according to Kolmogorov, is given by 

L

,                                     (5) ttxCtD ),()( 0

where C  is the Kolmogorov constant and 0 ),( tx  is the

ensemble-average rate of dissipation of turbulent

kinetic energy. Using the square of equation (la) and

applying the conditions for the Wiener process, the

change in Lagrangian velocity is: 

tbbu jkiji
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Then, from the equations (5) e (6), it is possible to

show that  is related to of the following

way:

),,( tbij ux 0C
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where ij  is the Kronecker delta.

LAMBDA uses a determined number of fictitious

particle to simulate the atmospheric diffusion. Each

particle can be marked for a mass. Which can be 

constant or variable in the time, due to deposition

effects and reaction chemistry [30]. However, the

spatial distribution of particle mass on computational

domain allows the computation of a three-dimensional

concentration field. The concentration (mass by m3), in 

a given time and position, is determined to account of 

the particle number in a cell or imaginary volume

centered in zyx ,, :

c
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where is the mass of the each particle, N  is the

particle number on the volume concentration and V  is 

the concentration volume. The mass of the each particle 

is determined to following equation:
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where  is the emission range, N  is the steps in

time and N  is the particle number emitted.

)(tQ

p

t

2.1 Parameterization of drift and diffusion

terms  in the Langevin equation 

In order to simulate the turbulent diffusion

employing the Langevin equation (1.a) the turbulent

velocity need to be expressed as variances  and 

decorrelation time scales ( ). Accounting for the

current knowledge of the PBL structure and 

characteristics, Degrazia et al. [8] have derived

parameterizations for  and 

2
i

iL

2
i iL . This 

parameterization is obtained from the Taylor statistical

diffusion theory; observed spectral properties, where a 
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linear combination of the two turbulent forcing

mechanisms (shear + buoyancy) is assumed [13], and

the value of the wavelenght associated to the energy

containing eddies. These parameterizations give

continuous values for the PBL at all elevations

 and all stability conditions from unstable

to stable , where  is the PBL height,

 is the aerodynamic roughness length and  is the

Monin-Obukhov length. The general expressions for 

 and  are the following: 
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where is the convective velocity scale, u  is the

local friction velocity,  is the reduced frequency

of the convective spectral peak, (  is the

reduced frequency of the neutral or stable spectral peak,

 is the Monin-Obukohv length,

c
imf )

n
imf )

zL  is an

average stability parameter for the convective PBL, 

 and  are the

nondimensional molecular dissipation rate functions

associated to buoyancy and mechanical productions,

respectively,

3/) uzsn

 is the buoyant rate of Turbulence

Kinetic energy (TKE) dissipation s is the mechanical

rate of TKE dissipation,   is the von Karman

constant,   and 
2)2(uic  with

 and 0 34,31i  for u , v

and  components, respectively.w
The turbulence parameterization from equation (1)

will be complete having  expressions for

 and . For a convective PBL 
c
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 and, recalling that

, being  the peak wavelength

of the turbulent velocity spectra,  expressions

for all wind velocity components can be derived.
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For neutral or stable PBL, ,

in which

1)/2 hzu

 for the neutral case [29]. Then, 

following Delage [9], and Sorbjan [25], and Stull [26],

it is obtained:

G
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i
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where  is the frequency of the spectral peak in

the surface for neutral conditions, G  is the geostrophic

wind speed,  is the Coriolis parameter

and  [6] is the local

Monin-Obukhov length. For a shear dominated stable

boundary layer,

1410 s

5.1( 1)/ h

5.11

)2

 and 0.1  [21].

According to Olesen et al. [22] and Sorbjan [25],

,  and 

. Furthermore, [16, 17] as 

a consequence of the Blackadar’s mixing length

hypothesis [4] (i.e., the asymptotic length scale

)n
vsmf

a

(

w

is limited by a constant value, equal for 

all the components) we found 3889  and 

. Then, by writing

/)0][()0 u G  where 

is the neutral geostrophic drag coefficient, equation

(16) results

G/u( )0
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By considering ( 03.0/)0 Gu  [18, 27] equation

(16) can be written as 
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It is important to emphasize the meaning of 

continuous parameterization for all stabilities in the

present paper is the following. At the same time and

location stable and unstable conditions cannot coexist.

Unstable and neutral effects may be jointly take into

account due to the contemporary presence of 

mechanical and convective turbulence. Stable and 

neutral effects may also jointly be accounted for 

because of the competition between wind-shear 

generated turbulence and stabilising effects of

stratification. Therefore, in unstable-neutral conditions

the last term of equation (5) is set equal to zero,

whereas in the neutral-stable conditions the term
c

imf1  is set to zero.

3. Parallel Implementation 

A preliminary study of the LAMBDA code has led

to the chosen parallelization strategy. Immediately two

strategies can be thought: (i) a domain decomposition,

where the space integration domain is partitioned in

small volumes, where each volume (sub-domain) is

addressed for different processor; (ii) the particles,

representing the pollutant substance, are divided among

the processors.

The main difficulty in the first strategy is that the

particles would be migrating from a sub-domain to

other. Therefore a dynamic load balacing is necessary 

at each time-stepping.

The second strategy provides a parallel

implementation that distributes these particles

uniformly among processors, becoming the dispersion

problem into an independent ensemble of the

Lagrangian models. Parallelization based on assigning

different particles to different processors is

straightforward and was employed in this work.

Therefore, a set of  particles are released to evolving on

different processors. 

Another significant point is that, for any strategy, as 

stated on the Amdahl's law [23], the gain in processing

time is limited to the fraction of the code that can be

executed in parallel. This profile was obtained by

means of the gprof Unix/Linux profiling tool. The

adopted strategy was then confirmed.

The related code was parallelized using calls to the

message passing communication library MPI and 

executed on a distributed memory parallel machine.

This machine is a cluster of 17 standard IA-32

architecture processors connected by a standard 

FastEthernet interconnection network and a 24-port

switch. High communication latencies are caracteristic 

of this hardware arrangement and, therefore, either

coarse granularity or latency hidding programming

techniques are a must.

4. Performance Results 

The proposed parallel implementation of the

LAMBDA code was tested with a characteristic data 

from Copenhagen experiment. This dispersion

experiment was carried out in the northern part of

Copenhagen [14, 15] The pollutant (SF6) was released 

without buoyancy from a tower at a height of 115 m

and collected at the ground-level positions in up to 

three crosswind arcs of tracer sampling units. The 

sampling units were positioned 2-6 km from the point

of release.

The site was mainly residential with a roughness

length of 0.6 m. The available data (see Table 1) were

used to create the input for the simulation. The profiles

of wind standard deviations and the Lagrangian

decorrelation time scale were calculated according the

equations (11) and (12), respectively. Wind speeds at

10 and 115 meters were used to calculate the

coefficient for the exponential wind vertical profile,

which is used to obtain the wind speed as follows:

10115log

)10()115(log UU
                (19a) 

10
)10()(

z
UzU  ,                         (19b) 

where U  is the wind speed at 10 m and U

is the wind speed at 115 m.

)10( )115(

Parameters Numerical  value 

-L (m) 292

h (m) 1920

u* (ms-1) 0.73

U 10 m (ms-1) 4.9

U 115 m (ms-1) 10.6

Q (gs-1) 3.2

Table 1. Meteorological parameters during the
Copenhagen experiment 
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In LAMBDA code, the horizontal domain was 

determined according to sampler distances and the 

vertical domain was set equal to the observed mixing

height. The time step was maintained constant and it 

was obtained according to the value of the Lagrangian 

decorrelation time scale ( ct
iL / ), where 

iL

must be the smaller value between
wv LLuL ,,  and 

is a empirical coefficient set equal to 10. Two 

thousand particles were released in each time step

during 500 time steps. The PDF Gram-Charlier

truncated to the fourth order was chosen [1, 8].

c

For the simulation a wind field is necessary for 

computing the pollutant dispersion. In the example

presented here an empirical relation for determining

wind field is used. However, the wind field could given

from a meso-scale meteorological model [8], given a

more accurate result. 

The simulation is run with a main wind blowing on

the direction-x over a flat terrain for a point source 

emitting 2000 particles per second. Final results for

time integration of the Lambda model are shown in

Figures 1a-1d, ranging from 1 up to 10 processors. The 

similarity among simulations is indicating that all

simulations are carried out successfully. 

The little disagreement among the solutions 

displayed in the Figure 1 is due to the stochastic nature

of the Lagrangian models, as a consequence of pseudo-

random numbers generate during the execution. But, in

terms of  pollutant concentrations, the values are pretty

similar, i.e, the parallelization does not affect the result,

as expected.

Observing Table-2, one can realizes that the 

parallelization was effective, presenting a good 

performance for the parallel code for this complex

computational simulator –  where p and seq. denote the

number of processors and the sequential execution

time, respectively. Figure 2 also shows the the cpu-time

according to the number of processors.

This good parallel performance could be predicted

observing the corresponding sequential code profiling, 

like the  partial gprof/Linux call graph profile shown in

Figure 3. Almost all computing processing of 

generation and particles dispersion is done by the

function lambda and its children routines.

p Time(sec.) Speed-up Efficiency

Seq. 174.43 - -
2 88.27 1.98 0.99
5 40.07 4.35 0.87
10 24.85 7.02 0.70

Table 2.  Speed–up and efficiency for p
processors
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Figure 1. Dispersion: (a) sequential, (b) 2 
processors, (c) 5 processors, and (d) 10 
processors.

The corresponding percentage of 81.9%, is not as 

greater as expected because were identified another 19

“spontaneous” type functions, that spent 31.55 seconds,

or 18.1% of the total execution time (174.43 seconds). 

Parents of this kind of function can not be determined.

Therefore, 81.9% means the whole effective remaining

processing time of this profiling concerns to lambda

function and its subsequent routines. Consequently, it is 

supposed that the sequential part of the respective

parallel code, will not contribute expressively for the

efficiency decreasing with the number of processors 

employed. It occurs mainly due to the communication

overhead of the MPI_REDUCE function at each step 

time to join the particles, separated in each processor. 

In order to give a support to this afirmation, in

Table-3 can be seen parallel execution time, subtracted 

to the reduction operation execution time for each 

number of processor. For 2, 5 and 10 processors, the

comunication overhead of reduction operation was 

2.39, 4.51 and 6.09 seconds, respectively. Note that the

efficiency now is superlinear with two processors, close

to linear using five and, using ten processors, the

efficiency increased a lot compared with Table-2. 

p Time(sec.) Speed-up Efficiency

Seq. 174.43 - -
2 85.88 2.03 1.02
5 35.56 4.91 0.98
10 18.76 9.30 0.93

Table 3.  Speed–up and efficiency for p
processors, supposing absence of reduction
operation overhead

The load balancing is not necessary for the present

strategy, because the number of particles released is 

fixed at the 2000, producing a perfect balance during

all simulations. This represents an additional advantage

for this parallel implementation.

Figure 2. Processing time versus number of 
processors (p).

Figure 3. Partial gprof/Linux call graph profile.

5. Final Remarks 

An important issue in parallel programming is to

maximize the amount of computation done by each

processor and to minimize the amount of 

communication, due in this case to MPI calls, in order

to achieve good performance. This is particularly

important in multicomputers as the communication

latency is relatively high. Therefore, a pollutant

dispersion model running independently from a 

complex meso-scale meteorological simulator will not

have the same difficulties, as a dynamic load balancing.

    Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01% of 
174.43 seconds 

index % time    self  children    called     name 
23.34 119.53 1/1 main [2]

[1]     81.9   23.34  119.53       1         lambda_ [1] 
               20.04   34.32 69681015/69681015     update_ [4] 
               49.91    0.00 69681015/70681015     reloca_ [5] 
               10.64    0.00 69681015/69681015     calmo3_ [9] 

2.96 0.00 69681015/69681015 cdomai_ [13
                0.17    1.42     500/500         gparti_ [14] 

]

                0.07    0.00       1/1           calconc_ [20] 
                0.00    0.00       1/1           preparagc_ [34]
                0.00    0.00       1/1           compare_ [33] 
-----------------------------------------------

The distribution of the virtual particles among the

processors allows good load balancing and requires a

small amount of communication. Therefore, good

values of speed-up and efficiency are achieved in the 

parallel implementation up to 10 processors. The

parallel processing was nearly linear for 2 processors 

(reduction of 50% in processing time), but the

performance was not maintained when more processors

were considered. The time processing was improved

55% (related to the 2 processors) and 38% (comparing
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to 5 processors), speed-up 4.35 and 7.02 respectively. 

As the runtime of the sequential part of the parallel 

code is not relevant, most of the efficiency decreasing 

may be associated with the communicaton overhead of 

the particles reduction operation, at each step of time 

loop. 

This work has shown that a cost effective 

architecture standard software tools can be successfully 

employed to efficiently solve the Lagrangian 

atmospheric dispersion models.
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