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Abstract: Fault detection has become an important issue
in complex engineering systems, providing the requirements
for fault tolerance, reliability and safety. Here, the engineer-
ing system discussed is a satellite that makes use of a reaction
wheel. The objective is the fault detection in this actuator.
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1. INTRODUCTION

The methods of fault detection and diagnosis can be used
in two distinct ways: the first, in the sense to avoid faults
making an early detection to improve repair and maintenance
management [1]; the second, called fault tolerance, consider
that faults could not be avoided and happened, in this case
fault-tolerant systems are required.

Figure 1 – Diagram showing: detection / diagnosis / reconfigu-
ration

Here, fault detection is under second approach, and is ap-
propriate to reconfiguration purposes. The figure 1 shows:
a process (satellite) with faults, the steps executed while the
fault occurrence, and the tasks related to this paper. Based
on the input and output measurements, features are gener-
ated describing certain mode (normal or faulty) of the satel-
lite. Next, methods based on process modelling and systems
theory are applied to detect and obtain symptoms of possible
faults. These are the two steps covered, therefore it should
provide the necessary results for the rest, not treated here but
present at the figure 1.

2. FAULT DETECTION BASED ON PARAMETER
ESTIMATION

Fault detection methods based on models, uses relations
among several measured variables to extract information of
possible changes caused by faults. One tool that allows the
extraction of these information is the parameter estimation.
It is important to distinguish between estimated parameters
and process coefficients, because the first one not always are
equal to the quantities to be known in the process (process
coefficients) [2].

Figure 2 – Scheme of fault detection based on parameter esti-
mation

Figure 2 shows that parameter estimation needs input
measurements, output measurements and knowledge of an
analytical model (figure 2a) that relates them. Thus, after
applying some estimation algorithm, the estimates are pro-
vided, consequently expressing more information about the
process coefficients; this phase is known as data processing



(figure 2b).
Knowing the process coefficients at the current instant

(figure 2c) and comparing with the nominal process (figure
2d), the changes are determined (figure 2e). Finally, the deci-
sion is taken about the fault occurrence (figure 2g); only the
determination of prior changes are not sufficient for this pur-
pose. Therefore, it is compared with the decision threshold
(figure 2f).

This process results in: time of fault detection and the
symptoms. The first result is the closest time of fault occur-
rence. And the second result is the deviation of the process
coefficients.

3. THE EXPERIMENT

A reaction wheel is an attitude actuator that uses the law
of conservation of angular momentum to apply torque to the
body of the artificial satellite. The reaction wheel assembly
is composed of: a rotating wheel over ball bearings, both
encapsulated in a frame and commanded by a brushless DC
motor at this same enclosure.

The motor used to simulate the reaction wheel function-
ing is controlled by voltage applied to the armature, in a
range varying from -11V to 11V. It may reach 2000rpm. The
measured signals are: armature voltage, armature current
and velocity. The sample period is 0.02s with an 8 bit A/D
converter and a butterworth digital filter [3] during 10 sec-
onds, obtaining 500 samples. A computer (Intel Pentium III
900MHz, RAM: 256MB, acquisition board: MIC926) was
connected on-line to the process, see figure 3.

Figure 3 – Scheme of equipment

4. DATA PROCESSING AND FEATURE GENERA-
TION

First, was obtained a model [4] such that inputs and out-
puts are related, and it will be applied for estimating param-
eters and obtaining the process coefficients. See sequence in
figure 2.

The output provided by the tachometer is proportional to
the motor velocity, equation 1, the armature current is related
to the applied voltage as in equation 2.

VT = KT ω(t) (1)

İa(t)La + Ia(t)Ra = Va(t)−Kbω(t) (2)

Table 1 – Symbols

VT (t) Voltage generated by the tachometer
KT Tachometer constant
ω(t) Angular velocity of the wheel
Ia(t) Armature current
La Armature inductance
Ra Armature resistance
Va(t) Voltage applied in the armature
Kb Motor constant
θ̂ Estimated parameters vector
γ(k) Correction factor at the instantk

ψ(k + 1) Matrix relating measurement to parameters
P (k) Covariance matrix
I Identity matrix
y(k + 1) Vector measurement

Reorganizing the equation 2, knowing the constant of
tachometer (2.5V/1000rpm) from [5], the equation 3 as a
model relating input and output measurements is obtained.

Ia(t) = θ̂1Va(t)− θ̂2İa(t)− θ̂3ω(t) (3)

With this model, the parameterŝθi can be estimated. For
this purpose, the recursive least squares algorithm is em-
ployed, [6]. Equations 4 to 6 correspond to this algorithm,
indicated at figure 2b:

γ =
1

ψT (k + 1)P (k)ψ(k + 1) + 1
P (k)ψ(k + 1) (4)

P (k + 1) = [I − γ(k)ψT (k + 1)]P (k) (5)

θ̂(k + 1) = θ̂(k) + γ(k)[y(k + 1)− ψT (k + 1)θ̂(k)] (6)

The symbols used until here, are explained at table 1. The
results, after 400 trials, of the parameter estimation are stated
at the figure 4.

Figure 4 – Resultados: a)Ra = 2.249 ± 0.0549Ω b) La =
0.00767± 0.00337H c) Kb = 0.0267± 0.0023Nm

A

5. FAULT DETECTION

The results obtained for the nominal operation mode,
gives the information represented at figure 2d, the process co-
efficients are always calculated, figure 2c, and compared with



their nominal values for the changes determination, through
the algorithm described in equations 7 to 9.

µ̂pi(k) =
1
N

N∑

j=1

pi(k − j) (7)

σ̂2
piI(k) =

1
N

N∑

j=1

[pi(k − j)− µ̂pio]
2 (8)

σ̂2
piII(k) =

1
N

N∑

j=1

[pi(k − j)− µ̂pi
]2 (9)

Wherepi is the process coefficient,̂µi is the mean of the
process coefficient and̂σi is the standard deviation of the pro-
cess coefficient.

These are the results which has shown at the figure 2e.
Now, the fault decision about the faulty process has to be
made.

A fault decision is simply to assume one of the two hy-
pothesis:H0 (nominal process or null hypothesis) andH1

(faulty process or alternative hypothesis). At each time in-
stant a decision is made, and assuming that either hypothesis
can be true or false, this is a binary hypothesis testing prob-
lem. Thus, four possible cases can occur.

In two cases the decision is correct (no fault−→ H0 = 1
and fault−→ H1 = 1), and in other two, incorrect (no fault
−→ H0 = 0 and fault−→ H1 = 0). The last ones are
respectively called by: false alarm and miss alarm. Obvi-
ously, by reasons of safety, the consequences of an incorrect
decision are not the same of a correct decision; with this rea-
soning, each situation have a different cost and the objective
of the bayesian decision criterion is precisely to minimize
the mean of the total cost (risk function). The decision rule
resulting of the Bayes criterion is in equation 10, [1].

di(k) =
σ̂2

piI
(k)

σ̂2
pio

− ln
σ̂2

piII(k)
σ̂2

pio

− 1 (10)

Using the Bayes criterion, the probabilities of hypothe-
sis occurrence is assumed to be known. These probabilities,
P (H0) e P (H1), can be estimated if a sufficient amount of
data exists [6]. Here, it is assumed that these two a-priori
probabilities are equal and known (P0 = 0.5). It is of ma-
jor influence in the threshold value at the likelihood ratio test
(equation 11), [1]. In a fault casedi > wi.

wi(k) = ln
NP0

1− P0
(11)

6. RESULTS

The first experiment introducing a fault is called experi-
ment F1, when an asymmetric gain on the power amplifier is
forced.

In figure 5a, it is shown the behavior of the variable veloc-
ity before fault occurrence and when the fault is injected, ap-
proximately at 2 seconds. Until the injection of fault, the sys-
tem has a transient response of less than 1.5 seconds, where
it achieves steady state behavior. When the fault is injected,

Figure 5 – Results detecting the fault 1 (F1: Asymmetric gain
on the power amplifier)

around 2 seconds, the velocity behavior looks like a second
transient response and achieves another steady state behav-
ior. This system’s response is due to a change in a feature of
the process, not a control signal, input or disturbance.

This fault is sensed like indicated at figure 5b by the coef-
ficientRa, which varies as in figure 5c, increasing the mean.
Note that, during the transient response, the test quantitydRa

increases but never crosses the threshold, until the fault oc-
currence. A sluggish response of this test quantity in pres-
ence of fault F1 could be observed, perhaps, adjusting the
threshold by defining its parameters according with experi-
ence or even by estimating them. The other process coeffi-
cients did not present any kind of change, neither in mean or
variance.

The estimate of armature resistance, was very close to its
nominal value during fault free operation. Remember that a
constant voltage is applied to the armature; if for the same
input, an output with smaller magnitude than before is ob-
tained, then, a larger obstruction to the flow of current could
exist. This feature was shown by the measurement model as
an increasingly armature resistance.

The fault F2, is observable in all process coefficients; un-
like fault F1, where only the armature resistance changes.
This second fault presents a clean signature, figures 6d to 6f.
It occurred approximately (this time of fault is always un-
known) at 2 seconds, and is detected fairly after, figures 6a
to 6c.

Figure 6a shows the response of the test quantitydRa ,
which immediately increases its magnitude few samples after
fault occurrence. The same happens with the other two test
quantities (dLa anddK) with different magnitudes but very
similar behavior. Detection by the test quantities of arma-
ture resistance and motor constant (figure 6c) is at the same
time, and by the armature inductance (figure 6b) happens few
samples after these.

Abrupt changes in the mean takes place in all three param-
eters. The magnitude at time2s express this abrupt change



Table 2 – Symptoms

FAULT Ra La Kb

F1: Asymmetric gain on the PA +(1)
F2: Loss of the MSB of D/A converter+(1) -(2) -(1)

sensed in all output variables measured, noted too at figures
6d, 6e e 6f.

Two inserted faults (F1 and F2) could be detected, ac-
cording with the Bayesian approach. Figures 5 and 6 have
symptoms and time of fault, the desired results for fault the
detection procedure stated at the beginning of this paper (fig-
ure 2g). But it is nothing more than working with only two
hypothesis. Other task is to separate this hypothesis in differ-
ent groups, in such a way to identify which situation belongs
to each one of this groups. It would be the next step after
fault detection.

The time in which the faults were detected, and the be-
havior of the process coefficients, are the results obtained to
the fault diagnosis, noting that faults F1 and F2 represent dif-
ferent signatures.

Figure 6 – Results detecting the fault 2 (F2: Loss of the most
significant bit of D/A converter)

Following table 2, with fault detection results giving nec-
essary information to perform fault diagnosis.

7. CONCLUSION

The experimental work in detecting faults based on ana-
lytical models is the beginning of the cycle described in fig-

ure 1. The steps exhibited by figure 2, were covered entirely
along this work. The recursive least squares algorithm was
a great tool for determining the nominal values, which were
really close to a normal distribution, figure 4. Some reviews
have to be made for the armature inductance, because this
process coefficient has a standard deviation comparable with
its nominal value. An idea to improve the results in future
works, is to apply other methods or develop another mea-
surement model for the parameter estimation.

Solely the process coefficientRa could detect a feature
change through its test quantity in fault F1. Even so, the
response is too late, needing more than 150 samples to sense
a faulty behavior. All the process coefficients had responses
during the injection of fault F2, detected by its test quantities.

The a-priori probability of fault occurrence has an impor-
tant task into fault decision, hence it is possible to move the
decision threshold. For future works, the estimation of this
parameter is plausible and desirable. Weighing missing and
false alarms in distinct ways, more or less severe, would be
also a good idea.

In general, all the results obtained were satisfactory, since
detection was accomplished. Here, the concern is with test-
ing two hypothesis (non faulty and faulty process), however
the table 2 allows to go further. For example to identify
other two distinct hypothesis (diagnosis); and this analysis
still could be refined by evaluation of respective variances;
not only the mean. Implementation in a real-time application
is also of direct interest.

ACKNOWLEDGMENTS

Thanks to INPE, CEFET Campos, CAPES and to the
following courses: Optimization in dynamic systems II and
Digital Control; both realized during graduate course of En-
gineering and Space Technology / Space Mechanics and
Control at INPE.

REFERENCES

[1] R. Patton, P. Frank, and R. Clark, “Fault Diagnosis in
Dynamic Systems: Theory and Applications”, Pren-
tice Hall, 1st ed., Cambridge, 1989.

[2] R. Isermann, “Model-Based Fault Detection and Diag-
nosis - Status and Applications -,” 16th Symposium on
Automatic Control in Aerospace, St. Petersburg, June
2004.

[3] G. Franklin, J. Powel, “Digital Control of Dynamic
Systems,” Addison-Wesley, 2nd ed, 1981.

[4] R. C. Dorf, R. H. Bishop, “Modern Control Systems,”
Addison-Wesley, 8th ed, 1998.

[5] Feedback Instruments Limited, “Analogue Servo -
Fundamentals Trainer”, Feedback Instruments Lim-
ited, Crowborough, 2001.

[6] R. Isermann, “Fault-Diagnosis Systems: An Intro-
duction from Fault Detection to Fault Tolerance”,
Springer-Verlag, 1st ed., Berlin, 2006.


