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Abstract. Inverse problems in vibration is a process of determining parameters

based on numerical analysis from a comparison between measured vibration data

and its predicted values provided by a mathematical model. In this work the dis-

placement data have been chosen in order to identify the stiffness matrix which

will cause a changing in the time-history of the system displacement. This is an

inverse problem, since the stiffness matrix evaluation is obtained through the de-

termination of the modified stiffness coefficients. In this work, the artificial neural

network technique is applied to the inverse vibration problem where the goal is

to estimate the unknown time-dependent stiffness coefficients simultaneously in a

two degree-of-freedom structure, using a Multilayer Perceptron Neural Network

model. Numerical experiments have been carried out with synthetic experimental

data considering a noise level of 1%. Good recoveries have been achieved with this

methodology.

1. Introduction

In vibration science, the solution of direct forced vibration problems is concerned
with the determination of the system displacement, velocity and acceleration at time
t when the initial conditions, external forces and time-dependent system parame-
ters, such as stiffness and damping coefficients, are specified. On the other hand,
the solution of inverse vibration problems is concerned with the estimation of such
quantities: stiffness or damping coefficients, external forces, from the measured vi-
bration data, such as frequency and/or mode shape measurements, or displacement
measurements at different time t.

Considering the structural damage detection problem, it is displayed as an in-
verse vibration problem, since the damage evaluation is achieved through the deter-
mination of the stiffness coefficient variation, or the stiffness coefficient by itself. A
variety of experimental, numerical and analytical techniques has already been pro-
posed to solve the damage identification problem, and it has received considerable
attention due to its practical applications [5]. These methods are usually classified
under different categories, such as frequency and time domain methods, and de-
terministic and stochastic approaches [3]. Among the deterministic approaches the
Conjugate Gradient method with the Adjoint Equation has been successfully used
for different damaged lumped parameter systems [9, 8, 4]. Among the stochastic
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methods, the use of the artificial neural networks (ANN), which has already been
used successfully in thermal sciences [12], has also been presented as a satisfactory
choice to deal with the damage identification problem [5, 13, 14, 2]. The fault toler-
ance, generalization capabilities of ANN’s make them attractive to approach inverse
problems.

Mathematically the inverse problems are classified as ill-posed problems. A
problem is considered well-posed if the following requirements are satisfied: the
problem solution exists, it is unique and stable related to the input data [6]. For
the inverse problems, in general, this conditions are not satisfied because small
variations in the input data, such as random errors inherent to the measurements
used in the analysis, can cause large oscillations on the solution. Usually the inverse
problem, i.e. the ill-posed problem, is presented as a well-posed functional form,
whose solution is obtained through the use of optimization procedures. It should
be pointed out that knowing the behaviour of the stiffness coefficients in the time
domain, a prediction of the service life of the structure could be assigned.

2. The Direct Problem

The N -DOF damped system considered in this work is presented in the Figure 1
and the mathematical formulation of this forced vibration system is given by

M ẍ(t) + C(t) ẋ(t) + K(t)x(t) = f(t), t > 0, (2.1)

with initial conditions
x(0) = x0 and ẋ(0) = ẋ0 , (2.2)

where M represents the system mass matrix, K(t) the time-dependent stiffness
matrix, C(t) the time-dependent damping matrix, f(t) the external forces vector,
and x(t) the displacements vector. There exists no analytical solution for system
(2.1)-(2.2) for any arbitrary functions of K(t), C(t), and f(t). For this reason the
numerical solution with the Newmark method [11] is applied to solve the direct
problem. This method calculates the system displacement vector x(t), if initial
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Figure 1: The forced vibration system.
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conditions, system parameters M, K(t) and C(t), and the time-dependent external
forces f(t) are known.

3. Multilayer Perceptron Neural Network

Artificial neural networks (ANN’s) are made of arrangements of processing elements
called neurons. The artificial neuron model basically consists of a linear combiner
followed by an activation function, Figure 2(a), given by:

yk = ϕ





n
∑

j=1

wkj xj + bk



 , (3.1)

where wkj are the connections weights and bk is a threshold parameter.
Arrangements of such units form the ANN’s that are characterized by:

• Very simple neuron-like processing elements;

• Weighted connections between the processing elements;

• Highly parallel processing and distributed control;

• Automatic learning of internal representations.

ANN’s aim to explore the massively parallel network of simple elements in order
to yield a result in a very short time slice and, at the same time, with insensitivity
to loss and failure of some of the elements of the network. These properties make
artificial neural networks appropriate for application in pattern recognition, signal
processing, image processing, financing, computer vision, engineering, etc.

There exist different architectures of ANN that are dependent upon the learning
strategy adopted. This paper briefly describes the Multilayer Perceptron (MLP)
with backpropagation learning. Detailed introduction on ANN’s can be found in [7]
and [10]. MLP with backpropagation learning algorithm, are feedforward networks
composed of an input layer, an output layer, and a number of hidden layers, whose
aim is to extract high order statistics from the input data [7]. Figure 2(b) depicts
a backpropagation neural network with a hidden layer.

Functions ϕ(·) provide the activation for the neuron. Neural networks will solve
nonlinear problems, if nonlinear activation functions are used for the hidden and/or
the output layers. From several activation functions, the sigmoid are commonly
used:

logistic function : ϕ(v) =
1

1 + exp(−av)
; (3.2)

bipolar function : ϕ(v) =
1 − exp(−av)

1 + exp(−av)
. (3.3)

A feedforward network is a non-linear mapping to compute the output vector from
an input vector. The connections among the several neurons (Figure 2(b)) have
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Figure 2: (a) Single Neuron, (b) Multilayer Neural Network.

associated weights that are adjusted during the learning process, thus changing
the performance of the network. Two distinct phases can be devised while using
an ANN: the training phase (learning process) and the run phase (activation of
the network). The training phase consists of adjusting the weights for the best
performance of the network in establishing the mapping of many input/output
vector pairs. Once trained, the weights are fixed and the network can be presented
to new inputs for which it calculates the corresponding outputs, based on what it
has learned.

The backpropagation training is a supervised learning algorithm that requires
both input and output (desired) data. Such pairs permit the calculation of the
error of the network as the difference between the calculated output and the desired
vector. The weight adjustments are conducted by backpropagating such error to
the network, governed by a change rule. The weights are changed by an amount
proportional to the error at that unit, times the output of the unit feeding into the
weight. Eq. (3.4) shows the general weight correction according to the so-called the
delta rule

∆wkj = η δk yj , (3.4)

where, δk is the local gradient, yj is the input signal of neuron k (for hidden layers,
or even the out-put layer), and η is the learning rate parameter that controls the
strength of change.

4. Inverse Problem Solution by ANN

The stiffness estimation problem has already been solved employing others methods
[8, 9, 4]. In this work a MLP Neural Network is employed to solve the same problem
presented in [9], a 2-DOF dynamical system. The following parameters have been
used in the forward problem, given by system (2.1)-(2.2): M1 = 1.0 and M2 = 3.0;
C1(t) = 8.0 and C2(t) = 5.0; f1(t) = 50.0 and f2(t) = 60.0; and initial conditions
x(0) = 0 and ẋ(0) = 0. The unknown transient stiffness coefficients have been
assumed as:

K1(t) = A1 − B1 sin (ω1 t) ; K2(t) = A2 + B2 cos (ω2 t) . (4.1)

In order to improve the time information to the neural network, a history of 15
time steps is used, resulting of 30 input vector and 2 desired output vector. This
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means that we are using a time-history with 15 time-steps for predicting the stiffness
matrix at time-step 16, and so on. This strategy is called as ”time-delay ANN”, see
for example [1]. Only one hidden layer was sufficient to obtain satisfactory results.
The sigmoid activation function has been used in both hidden and output layers,
Eq. (3.3).

The experimental data, which intrinsically contains errors in the real world, have
been simulated by adding a random perturbation to the exact solution of the direct
problem, such that

xexp(t) = x(t) + x(t)[σ ×R] , (4.2)

where σ is the standard deviation of the noise and R is a random variable taken
from a Gaussian distribution, with zero mean and unitary variance. For numerical
purposes, it has been adopted the whole time period tf = 36 s, and the time step
△t = 0.1 s.

In order to evaluate the accuracy of this procedure, the error between the solu-
tion obtained by the neural network and the exact solution is defined by

E(K̂) =

∥

∥

∥

∥

∥

Kexact(t) − K̂(t)

Kexact(t)

∥

∥

∥

∥

∥

2

2

, (4.3)

where ‖ · ‖2 is the 2-norm.

4.1. Training

The training set is built up from the solution of the direct model, system (2.1)-(2.2),
assuming several different variations of the stiffness functions, Eqs. (4.1), generat-
ing the respective displacements. For the training phase the desired output of the
ANN are the stiffness coefficients, while the input of the ANN are the corresponding
measured displacements. For each assumed stiffness coefficient function, the corre-
sponding displacement is computed to adjust the weight and bias which will be used
in the activation phase. The training set was composed by 12 different functions
for the stiffness coefficients. This functions are defined trough the expressions (4.1)
where the values for the parameters Ai, Bi and ωi (i = 1, 2), have been assumed
different from those used in the generalization phase.

Furthermore, according to the noise level, three different sets of the displacement
functions have been used. The first one free of noise (noiseless) – ANN-1, the second
one corrupted by 1% of noise – ANN-2, and third data set using 3% of noise – ANN-
3. Typical displacement functions are presented in Figures 3 and 4 for the noiseless
and 1% of noise cases, respectively.

5. Numerical Results

In the activation phase the inverse problem is solved by using the weights and bias
obtained during the training phase. The robustness of the trained MLP is evaluated
employing displacement functions not used in the training phase. Displacement
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Figure 3: Noiseless data.
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Figure 4: Noisy data - 1%.

functions corrupted by different levels of noise have been used to simulate a more
realistic situation.

The generalization capacity of the MLP is verified considering 18 different func-
tions. The first 14 functions are defined through the expressions (4.1) where the
parameters Ai, Bi and ωi, for i = 1, 2, are presented in Table 1.

Other 4 functions were used in the generalization phase which are defined as:
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Table 1: Parameters used in the training functions.

Function A1 A2 B1 B2 ω1 ω2

1 18 8 5 3 2π/36 2π/36
2 18 8 7 4 2π/36 2π/36
3 18 8 3 2 2π/36 2π/36
4 11 5 5 3 2π/36 2π/36
5 25 11 5 3 2π/36 2π/36
6 18 8 5 3 2π/52 2π/52
7 18 8 5 3 2π/18 2π/18
8 18 8 7 4 2π/52 2π/52
9 18 8 3 2 2π/18 2π/18
10 11 5 3 2 2π/18 2π/18
11 18 8 0 0 0 0
12 18 8 5 3 5π/9 5π/9
13 18 8 5 3 2π/36 5π/9
14 18 8 5 3 5π/9 2π/36

- Function 15

K1 =

{

4/5 t + 12 0 ≤ t < 18 ,
4/5(36 − t) + 12 18 ≤ t ≤ 36 .

(5.1)

K2 =

{

2/5 t + 4 0 ≤ t < 18 ,
2/5(36 − t) + 4 18 ≤ t ≤ 36 .

(5.2)

- Function 16

K1 =

{

4/5 t + 12 0 ≤ t < 18 ,
4/5(36 − t) + 12 18 ≤ t ≤ 36 .

(5.3)

K2 =

{

12 − 2/5 t 0 ≤ t < 18 ,
12 − 2/5(36 − t) 18 ≤ t ≤ 36 .

(5.4)

- Function 17

K1 =

{

4/5 t + 10 0 ≤ t < 18 ,
4/5(t − 18) + 10 18 ≤ t ≤ 36 .

(5.5)

K2 =

{

12 − 2/5 t 0 ≤ t < 18 ,
12 − 2/5(36 − t) 18 ≤ t ≤ 36 .

(5.6)

- Function 18

K1 =
{

10 − 5 sin (2πt/36) . (5.7)

K2 =

{

12 − 1/5 t 0 ≤ t < 18 ,
12 − 1/5(t − 18) 18 ≤ t ≤ 36 .

(5.8)

The average error, Eq. (4.3), is computed considering the recovered functions for
each stiffness coefficient K1 and K2.

E(K̂j) =
N

∑

i=1

E(K̂j)i

N
, where N = 18 , j = 1, 2 . (5.9)
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The standard deviation of the estimation errors for the recovered stiffness coeffi-
cients K1 and K2 has been calculated using the expression

E(K̂j)std =

√

√

√

√

1

N

N
∑

i=1

(

E(K̂j)i − E(K̂j)
)2

, where N = 18 , j = 1, 2 . (5.10)

The activation was performed using noiseless data, and data with 1% and 3% of
noise, see Eq. (4.2). Table 2 presents the statistic values, defined by the Eqs. (5.9)-
(5.10), when the inverse problem has been solved for 50 different “seeds” used in
the generation of the random noise for each noise level.

Table 2: Errors - First test: training for noiseless data.

noise E(K̂1)mean E(K̂2)mean E(K̂1)std E(K̂2)std

0% 2.6226 1.6313 5.5789 1.7493
1% 2.8722 1.8303 5.6167 1.7425
3% 4.8850 3.4548 5.6910 1.7925

In the second test, the MLP has been trained with displacement functions cor-
rupted by a 1% noise in training set. Similar to previous test, the estimations for
the 50 different cases were used to generate the statistic values presented in Table 3.

Table 3: Errors - Second test: training for data with 1% of noise.

noise E(K̂1)mean E(K̂2)mean E(K̂1)std E(K̂2)std

0% 2.3745 1.4745 5.7822 1.7652
1% 2.5552 1.6472 5.7824 1.7567
3% 4.0020 3.0084 5.7480 1.7727

Tables 2 and 3 present qualitative results of the stiffness coefficients estimation.
Furthermore, it has been showed that when a higher noise level is considered the
mean of the estimation errors present a considerable increase. A sensible improve-
ment of the mean errors has been noticed when noisy data are used in the neural
network training, rendering the MLP slightly more robust in relation to the noisy
experimental data. Following, for a quantitative evaluation of the stiffness coeffi-
cients estimation, the best and worst estimation cases, picked up from the complete
generalization test set, will be presented.

Figures 5-7 show the best estimation among the 18 test-functions. These figures
present the estimation results for the ANN-2 with three different levels of noise in
the measured data. From the values presented in Table 4, it can be noticed that the
stiffness estimations are strongly affected by the quality of the experimental data.
However, the estimation results obtained when the experimental data are corrupted
by a 1% noise are similar to that presented in [9].
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Figure 5: Estimated stiffness coefficients for ANN-2: noiseless data.
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Figure 6: Estimated stiffness coefficients for ANN-2: data corrupted by 1% of noise.

5 10 15 20 25 30 35 40
4

6

8

10

12

14

16

18

20

22

24

time

S
tif

fn
es

s 
C

oe
ffi

ci
en

t

Recovered Stiffness Coefficients − 2 − DOF system − noisy data

Exact K
1
(t)

Exact K
2
(t)

Estimated K
1
(t)

Estimated K
2
(t)

Figure 7: Estimated stiffness coefficients for ANN-2: data corrupted by 3% of noise.
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Table 4: Errors - Stiffness 1.

noise E(K̂1)mean E(K̂2)mean E(K̂1)std E(K̂2)std

0% 0.3979 0.4729 — —
1% 0.5459 0.6550 0.0573 0.0867
3% 2.0010 1.9959 0.2859 0.3343

The worst estimation has been achieved considering discontinuous stiffness coef-
ficients functions. Figures 8-10 present the estimation results for ANN-2. It should
be pointed out that the quality of the estimation does not present the same per-
formance of those obtained previously. It can be confirmed through the statistical
values presented in Table 5. Moreover, it should be noticed that even with the signif-
icant discontinuity presented in the first derivative, its influence is less pronounced
for K2 coefficient.

Table 5: Errors - Stiffness 2.

noise E(K̂1)mean E(K̂2)mean E(K̂1)std E(K̂2)std

0% 25.1971 0.7345 — —
1% 25.6438 0.9395 0.6404 0.0745
3% 26.9233 2.3354 1.5664 0.1956

6. Final Remarks

The inverse vibration problem of estimating the unknown time-dependent stiffness
coefficients of a 2-DOF forced dynamic system has been solved using a MultiLayer
Perceptron Neural Network. For structural engeneering, the estimation of the stiff-
ness matrix is cited as damage identification.

The numerical results presented in this work are concerned to the noiseless and
noisy experimental data represented by the system displacements. When noiseless
experimental data are considered, perfect estimations of the time-dependent stiff-
ness coefficients have been achieved. Considering noisy experimental data, good
(not perfect) estimations of the time-dependent stiffness coefficients have been
achieved. Through the estimation of the time-history of the stiffness coefficients
one could estimate the operating life time of the specific structure.

It should be pointed out the generalization capacity of the trained MLP em-
ployed in this work. Even the training set being composed only by continuous
stiffness functions, also discontinuous functions have been satisfactorily estimated.
Moreover, good results have been obtained only when using a range of 15 time
steps of the displacement time-history in the input data of the neural network.
This strategy has been used for the training and activation phases. The use of this
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Figure 8: Estimated stiffness coefficients for ANN-2: noiseless data.
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Figure 9: Estimated stiffness coefficients for ANN-2: data with 1% of noise.
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Figure 10: Estimated stiffness coefficients for ANN-2: data with 3% of noise.
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extended time range has been shown adequate, since more information regarding
the behaviour of the dynamic of the system is presented to the ANN.

Numerical experiments were carried out using three data set for training: (i)
noiseless data (ANN-1); (ii) data with 1% of noise (ANN-2); and (iii) data with
3% of noise (ANN-3). During the learning phase two stopping criteria were used,
a desired error of 10−5 or 5 × 104 maximum number of epoches. In all cases, the
training phase was stopped with 5× 104 epoches. Best results were obtained using
ANN-2, see Figures 5-10.

Inverse solutions obtained are similar to those presented by C. H. Huang [9].
However, after training process, ANN’s are much faster than the variational ap-
proach, additionally, ANN’s are intrinsicly parallel algorithms. Finally, ANN’s can
be implemented by hardware devices.
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